Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

лекции биология / Пластиды

.doc
Скачиваний:
70
Добавлен:
08.04.2015
Размер:
34.3 Кб
Скачать

Пластиды.

Пластиды высших растений бывают 3-х типов. У низших (водорослей, например) они более разнообразны.

  • хлоропласты (Хлорос – зеленые) по форме похожи на зерно чечевицы. Поэтому есть название – хлорофилловые зерна. Пигмент хлорофилл придает растениям зеленый цвет.

  • Хромопласты – (Хромос –цвет) окрашены различно. Образованы пигментами красного, желтого, оранжевого цвета.

  • Лейкопласты (бесцветные).

Хлоропласты находятся в зеленых частях растений. Все пластиды всегда находятся только в цитоплазме растительных клеток. Ни в вакуолях, ни в оболочке пластид не бывает. Цитоплазма – часть протопласта. В виде геля или золя. Состоит из живой части и органоидов: кристаллические белковые зерна, мембранные системы. Основной органоид – ядро. Хлоропласты по консистенции полужидкие, в них происходит фотосинтез.

Фотосинтез – сложный биохимический процесс, комплекс биохимических реакций. Суммарное уравнение фотосинтеза –

20+6СО2+ h→С6Н12О6+ 6О2.

Фотосинтез – многоступенчатый процесс. Переносчик ē – цитохромы С. Роль фотосинтеза – космическая. Ее трудно переоценить. В результате фотосинтеза ежегодно образуется 400 млрд тонн органических веществ. При этом связывается в процессе фотоситеза 160 млрд тонн углевода. К счастью, столько же органических веществ и разлагается в результате жизнедеятельности человека, животных, микроорганизмов. Микроорганизмы возвращают в атмосферу СО2↑. Иначе планета была бы завалена неразложенной органикой, истощили запас углекислого газа, которого в атмосфере 0,3 – 0,03%.

Масса растений в 220 раз больше массы всех животных. В фундаменте цепей питания находятся растения. Однако по количеству видов растения значительно уступают. Насекомых более 1 млн видов. Всех растений – 500 тыс видов.

Строение хлоропласта.

Хлоропласт представляет собой двойную белково – липоидную мембрану. Двойная мембрана есть еще только у митохондрий, у остальных органелл – одинарная. Тело хлоропласта – строма, полужидкая. В нее погружены различные мембранные структуры. Их 2 типа: плоские дисковидные мешочки, уложенные стопочками – граны. На мембранах гран находится пигмент хлорофилл – источник энергии для фотосинтеза. Граны связаны между собой более узкими мембранами – тилакоидами стромы. Не имеют форму дисков. Их совокупность образует единую систему. Синтез органических веществ происходит в строме. Кроме хлорофилла есть и другие пигменты – красный – каротин, желтый – ксантофилл, их меньше, чем хлорофиллов.

Кроме пигментов содержится ДНК – вещество наследственности, РНК – посредник в переносе наследственной информации, рибосомы. Причем, синтез белка в хлоропластах не зависит от ядерной ДНК. Если белок синтезируется , то он присутствует в биосинтезе.

Внутри стромы находятся шаровидные образования, крахмалистые – результат фотосинтеза, трансформируется в другие части клетки.

Хромопласты – имеют различные оттенки красного, желтого, оранжевого цветов и находятся в ярко – окрашенных частях растений. Например, лепестки цветов, поды, корнеплоды – хромопласты придают им яркую окраску. Форма хромопластов неодинакова даже в пределах одной клетки. Зрелые хромопласты – твердые. Цвет зависит от соотношения каротина и ксантофилла. Т.к. эти пигменты откладываются в виде кристаллов, то их различное взаиморасположение придает различную форму пластидам. Роль хромопластов заключается в том, что яркая окраска венчиков привлекает насекомых – опылителей. Яркие плоды – привлекательны для животных, распространяющих семена. Хромопласты содержатся в корнеплодах. Морковь, содержит каротин = провитамин А. В плодах шиповника, рябины, яркие румяные яблоки, желтые лютики, оранжевые настурции, летнее разнотравье – результат присутствия хромопластов. Плоды вишни, сливы окрашены антоцианом клеточного сока. Белые венчики результат отсутствия пигментов, или наличия лейкопластов. Тем не менее, белые душистые цветки ландыша в хвойном лесу привлекают насекомых ярким белым пятном.

Лейкопласты – бесцветные. Располагаются в таких частях растений как кожица листьев, корневища, корни, корнеплоды, клубни картофеля. Не имеют пигментов, поэтому бесцветные. С трудом наблюдаются в микроскоп. Роль лейкопластов – накопление питательных веществ, увеличение размеров, определяют форму, тогда их называют по веществам: если накапливается крахмал, то образуются крахмальные зерна = амилопласты; если масло в виде капель = олеинопласты (элайопласты); если белки = называются протеинопласты-белковые зерна.

Форма лейкопластов – видовой признак.

Все пластиды имеют общее происхождение, поэтому могут превращаться друг в друга. Например, осеннее изменение окраски листьев – хлоропласты превращаются в хромопласты. При понижении температуры распад хлорофилла происходит быстрее, чем распад каротиноидов. Позеленение бесцветного ростка (глазки картофеля) – лейкопласты переходят в хлоропласты. Хромопласты – конечный продукт превращения. Хромопласты не могут превращаться в другие структуры. Яблоки, шиповник превращаются из зеленых в красные – аналогичный процесс взаимоперехода пластид. Если зеленые побеги держать в темноте, то они светлеют.

Пластиды не могут синтезироваться из других веществ.

Происхождение пластид. При размножении клеток пластиды появляются из пропластид. Вначале, перед митозом, делятся пропластиды, т.к. они не могут синтезироваться. Когда появились самые первые пропластиды - науке точно неизвестно. Существует симбиотическая гипотеза происхождения пластид. Исходный тип – хлоропласты. Самые первые живые организмы находились в первичном бульоне, т.е. были гетеротрофами (сапрофиты, или паразиты). По строению напоминали современных амебовидных: тонкостенные, одноклеточные. Самые первые фотосинтетики – сине – зеленые водоросли. Однако у них нет ни ядра, ни пластид, ни вакуолей – примитивное строение.

Гетеротрофы питались фаго- или пиноцитозом. Полагают, что при встрече клеток гетеротрофов и цианобактерий образовывались пищеварительные вакуоли, клетки переваривались, а питательные вещества использовались гетеротрофами. Поскольку в результате попадала часть веществ фотосинтеза, то постепенно перестраивались биохимические процессы. Такой симбиоз был выгоден для обоих организмов. Гетеротрофы получали органические вещества, а синезеленые водоросли – постоянство среды, защиту, углекислый газ, воду. В пользу этой гипотезы говорит двойная мембрана. Одна мембрана – принадлежность бактерии,– пищеварительной вакуоли гетеротрофа, а другая – оболочка сине-зеленой водоросли. Митохондрии имеют также симбиотическое происхождение.

Доказательством этой гипотезы служит автономное поведение хлоропластов внутри клеток, собственная биосинтетическая система. Размножение делением независимо от ядра клетки.

Недостаток теории: сине-зеленые водоросли способны к самостоятельному существованию на примитивном уровне. У современных – другой биохимический состав, другие пигменты, хлорофилл, другие запасные питательные вещества, не образуется крахмал.

2

Соседние файлы в папке лекции биология