- •Обработка результатов измерений в физическом практикуме
- •Погрешности прямых измерений
- •Погрешности косвенных измерений
- •Правила представления результатов измерения
- •Правила построения графиков
- •Динамика поступательного движения Работа1. Оценка точности прямых и косвенных измерений
- •Общие сведения
- •Порядок выполнения работы
- •Результаты измерений диаметра проволоки штангенциркулем и микрометром
- •Результаты измерений тока и напряжения
- •Контрольные вопросы
- •Работа2. Эквивалентность гравитационной и инертной масс
- •Общие сведения
- •Порядок выполнения работы
- •Контрольные вопросы
- •Работа3. Изучение законов механики с помощью прибора атвуда
- •Общие сведения
- •Порядок выполнения работы
- •Контрольные вопросы
- •Динамика вращательного движения
- •Работа4. Определение моментов инерции параллелепипеда методом крутильных колебаний
- •Общие сведения
- •Порядок выполнения работы
- •Контрольные вопросы
- •Работа5. Определение момента инерции с помощью маятника Обербека
- •Общие сведения
- •Порядок выполнения работы
- •Контрольные вопросы
- •Работа6. Определение момента инерции твердых тел с помощью маятника максвелла
- •Общие сведения
- •Порядок выполнения работы
- •Контрольные вопросы
- •Работа7. Измерение скорости полета пули с помощью баллистического маятника
- •Общие сведения
- •Порядок выполнения работы
- •Контрольные вопросы
- •Порядок выполнения работы
- •Контрольные вопросы
- •Работа9. Изучение прецессии гироскопа
- •Общие сведения
- •Порядок выполнения работы
- •Контрольные вопросы
- •Порядок выполнения работы
- •Контрольные вопросы
- •Работа11. Определение отношения
- •Методом стоячей волны
- •Общие сведения
- •Порядок выполнения работы
- •Контрольные вопросы
- •Работа12. Определение коэффициента вязкости, длины свободного пробега и эффективного диаметра молекулы газа
- •Общие сведения
- •Порядок выполнения работы
- •Контрольные вопросы
- •Работа13. Определение коэффициента вязкости жидкости
- •Общие сведения
- •Порядок выполнения работы
- •Контрольные вопросы
- •Работа14. Определение коэффициента поверхностного натяжения жидкости
- •Общие сведения
- •Порядок выполнения работы
- •Контрольные вопросы
- •Рекомендательный библиографический список
- •Содержание
Порядок выполнения работы
1. Измерить при помощи шкалы на колонке заданные пути равноускоренного (S1) и равномерного (S2) движений большого груза.
2. На правый большой груз положить один из дополнительных грузов.
3. Измерить время движения большого груза на пути S2.
4. Повторить измерения 10 раз и определить среднее значение времени движения большого груза на пути S2:
,
где
n= 10;
– результатi-го измерения.
5. Повторить измерения с грузами другой массы и вычислить по формуле (3) ускорение свободного падения каждого использованного груза, фиксируя результаты в табличной форме:
|
Номер опыта |
m |
S1 |
S2 |
ti |
|
g |
g |
|
1 |
|
|
|
|
|
|
|
|
2 |
|
|
|
|
|
|
|
|
… |
|
|
|
|
|
|
|
|
n |
|
|
|
|
|
|
|
6. Рассчитать стандартное отклонение
![]()
и сравнить полученное значение с приборной ошибкой. Если приборная ошибка мала, ею можно пренебречь.
7. Вычислить погрешность измерения ускорения свободного падения

где
=m= 0,01 г;
=
=1 мм;t10-3с.
Контрольные вопросы
1. Как отношение масс m/Mвлияет на погрешность в определении времени паденияt?
2. Почему масса mне может быть как угодно малой?
3. Почему измеренное на данной установке ускорение свободного падения меньше, а не больше 9,8 м/с2?
4. От каких параметров зависит ускорение движения грузов на участке S1? на участкеS2?
Работа3. Изучение законов механики с помощью прибора атвуда
Цель работы – экспериментально проверить законы динамики поступательного и вращательного движения, кинематические уравнения равномерного и равноускоренного движений; измерить момент инерции, силу трения и момент силы трения с помощью прибора Атвуда.
Общие сведения
Путь Sи скоростьvтела, движущегося прямолинейно с постоянным ускорениемaбез начальной скорости, изменяются со временем согласно уравнениям
.
(1)
Исключая из уравнений (1) время, получим связь координаты и скорости в виде
.
(2)
При равномерном прямолинейном движении путь, скорость и время связаны уравнением
.
Движение
точки по окружности характеризуется
угловой скоростью
,
угловым ускорением
,
а также тангенциальным
и нормальным
ускорениями. Линейная скоростьvсвязана с угловой соотношениемv = R,
а тангенциальное и угловое ускорения
– соотношениема=R.
Основными законами динамики являются законы Ньютона. Второй закон Ньютона определяет причину изменения движения:
,
где
– сила, вызывающая движение тела;m –
масса тела;
–
ускорение тела.

.
Основное уравнение динамики вращательного движения твердого тела имеет вид
,
г
де
– результирующий момент сил,
;r– плечо силы, т.е. кратчайшее
расстояние от оси до линии действия
силы;J– момент инерции тела
относительно оси вращения;– угловое ускорение.
Устройство и работа прибора Атвуда описаны в работе 2. Оценим количественно движение системы грузов (рис.1) на участкахS1(равноускоренное движение) иS2(равномерное движение). ПустьМ– масса грузов 1 и 2,m– масса перегруза. Уравнение движения грузов и блока (рис.2) запишем в виде
;
;
,
где Т1иТ2– силы натяжения, создаваемые
грузами 1 и 2 соответственно;RиJ– радиус и момент инерции блока;
– момент силы трения, действующей на
ось блока.
Ускорения
грузов а1=а2=а,
так как нить считается нерастяжимой.
Пренебрегая проскальзыванием нити по
блоку, можно положить
![]()
Решив систему уравнений относительно ускорения а, получим
(3)
Если допустить, что силы трения в блоке пренебрежимо малы по сравнению с mg, тоМтр/R«mg.Если пренебречь массой блока, от которой зависит момент инерцииJ, тоJ/R2«2M+m. Тогда
.
Если, наконец, масса перегруза значительно меньше масс грузов (m«2M), то ускорение можно рассматривать как линейную функцию массы перегруза:
a = mg/(2M). (4)
График зависимости a = f(m), соответствующий формуле (4), представляет собой прямую, проходящую через начало координат.
Справедливость упрощающих предположений, приводящих от формулы (3) к формуле (4), можно проверить экспериментально, измерив ускорение для различных масс грузов. Если график зависимости a = f(m), построенный по экспериментальным данным, будет сильно отличаться от графика, построенного по теоретической формуле (4), то это будет означать, что сделанные упрощающие предположения не совсем правильны. В этом случае можно из экспериментальных данных определить момент силы трения, силу трения и момент инерции блока.
Чтобы
найти силу трения Fтр, следует
определить сначала момент силы
.
Для этого запишем выражение (3), содержащее
неизвестныеJи
,
для двух пар значенийаиm:
![]()
![]()
где iиk– индексы, обозначающие порядковый номер измерения.
Решив
эту систему относительно Jи
,
получим
(5)
![]()
Сила трения
Fтр=
/r,
(6)
где r– радиус оси блока.
Чтобы определить ускорение грузов на участке S1, воспользуемся уравнением (2):
.
На участке
S2груз движется равномерно
со скоростью
,
следовательно,
.
(7)
Измерения проводятся на приборе Атвуда (см. работу 2). В этом приборе имеется два одинаковых груза с массами М, соединенными нитью, перекинутой через блок. На прaвый груз добавляется перегруз массойm, после чего система приходит в равноускоренное движение и проходит путьS1. В конце этого пути перегруз автоматически снимается, и система начинает двигаться равномерно на путиS2.
Результатом экспериментальной части работы должны стать значения времени tпрохождения грузом 2 путиS2.
К установке прилагается набор из нескольких колец (перегрузов) с разными массами m. Используя эти кольца по отдельности или в комбинации друг с другом, можно получить достаточно большой набор масс перегрузов.
