Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
КОНСПЕКТ.doc
Скачиваний:
121
Добавлен:
02.04.2015
Размер:
3.03 Mб
Скачать

1.2 Электропроводность полупроводников и ее изменение под воздействием различных факторов

В собственном полупроводнике носителями заряда являются свободные электроны и дырки, концентрации которых одинако­вы. При наличии внешнего электрического поля плотность элект­ронной составляющей тока, который протекает через собственный полупроводник, т. е. число электрических зарядов переносимых за единицу времени через единицу площади, перпендикулярной на­правлению электрического поля,

где q = 1,6-10-19 - заряд электрона, Кл; n - концентрация электро­нов зоны проводимости, м-3; Vn - средняя скорость упорядоченно­го движения электронов, возникшая под действием электрическо­го поля (дрейфовая скорость), м/с.

Обычно скорость Vn пропорциональна напряженности поля:

,

где μn - коэффициент пропорциональности, называемый подвиж­ностью, м2/(В·с).

Закон Ома в дифференциальной форме:

,

,

где σn - удельная электрическая проводимость полупровод­ника, обусловленная электронами, См/м; ρ = 1/σ - удельное элект­рическое сопротивление, Ом·м.

Аналогично, дырочная составляющая плотности тока для соб­ственного полупроводника:

.

где р - концентрация дырок валентной зоны, м-3; μp - подвижность дырок, м2/(В·с).

Удельная электрическая проводимость полупроводника, обус­ловленная дырками,

.

Суммарная плотность тока через собственный полупроводник

.

Удельная электрическая проводимость собственного полупро­водника

.

В примесном полупроводнике при комнатной температуре при­месь полностью ионизирована и, следовательно, проводимость оп­ределяется свободными подвижными носителями заряда, электро­нами и дырками в n- и p-полупроводниках соответственно:

,

где nn и рp - концентрация основных носителей заряда электронов и дырок соответственно.

Так как концентрация и подвижность свободных носителей за­ряда зависят от температуры, то и удельная проводимость также зависит от температуры. При этом для концентрации свободных носителей заряда характерна экспоненциальная зависимость, а для подвижности - степенная. Для собственного полупроводника, у ко­торого ΔW>kT, и с учетом того, что степенная зависимость сла­бее экспоненциальной зависимости, можно записать

,

где ΔW - ширина запрещенной зоны; k - постоянная Больцмана; Т- абсолютная температура; σ0 - множитель, не зависящий от тем­пературы; он должен выражать σ при Т = , т.е. когда все валент­ные электроны перешли в зону проводимости.

График зависимости σ(T) удобно построить, прологарифми­ровав это выражение:

.

Для примесного полупроводника электропроводность:

,

где ΔWa - энергия ионизации примесей.

На рисунке 6 представлена температурная зависимость полупроводника с различной концентрацией примеси.

Рисунок 6

Повышение удельной проводимости полупроводника с увеличением Т в области низких темпера­тур обусловлено увеличением концентра­ции свободных носителей заряда за счет ионизации примеси (рисунок 6, участки ab, de,kl).

Наклон примесного участка кривой за­висит от концентрации примесей. С рос­том концентрации атомов примеси в по­лупроводнике уменьшается наклон кривой к оси абсцисс, и она располагается выше. Это объясняется тем, что наклон прямой в области примесной проводимости опре­деляется энергией ионизации примеси. С увеличением концентрации примеси энер­гия ионизации уменьшается и соответ­ственно уменьшается угол наклона прямых.

При дальнейшем повышении температуры наступает истощение примеси - полная ее ионизация. Собственная же электропроводность заметно еще не проявляется. В этих условиях концентрация свобод­ных носителей от температуры не зависит, и температурная зависи­мость удельной проводимости полупроводника определяется зави­симостью подвижности носителей заряда от температуры. Резкое уве­личение удельной проводимости при дальнейшем росте температуры соответствует области собствен­ной электропроводности.

В сильных электрических по­лях нарушается линейность за­кона Ома (j = σ·Е). Минимальная напряженность электрического поля, начиная с которой не вы­полняется линейная зависимость тока от напряжения, называют критической. Эта граница не является резкой и определенной и зависит от природы полупровод­ника, концентрации примесей, температуры окружающей среды. Так как удельная проводимость определяется концентрацией свободных носителей заряда и их подвижностью, то линейность закона Ома нарушается в том случае, если по крайней мере одно из этих значений зависит от напряженности электрического поля.

Если изменение абсолютного значения скорости свободного но­сителя заряда под действием внешнего поля на среднем пути меж­ду соударениями сравнимо с тепловой скоростью, то подвижность носителей заряда зависит от электрического поля, причем она мо­жет увеличиваться или уменьшаться в зависимости от температу­ры окружающей среды. Воздействие сильного электрического поля приводит к значительному росту концентрации свободных носи­телей заряда.

Под воздействием внешнего электрического поля напряженно­стью Е на полупроводник его энергетические зоны становятся на­клонными. На рисунке 7 представлены электрические зоны полупроводника в сильном электрическом поле.

Рисунок 7

В сильном электричес­ком поле при наклоне зон возможен переход электрона из валент­ной зоны и примесных уровней в зону проводимости без измене­ния энергии в процессе туннельного «просачивания» электронов через запрещенную зону. Этот механизм увеличения концентрации свободных носителей под действием сильного электрического поля называют электростатической ионизацией, которая возможна в электрических полях с напряженностью примерно 108 В/м.

На рисунке 8 представлена зависимость проводимости полупроводника от напряженности внешнего электрического поля, при этом участок 1 соответствует выполнению линейности закона Ома, 2 - тер­моэлектронной ионизации, 3 -электростатической и ударной ионизации, 4 - пробою.

Рисунок 8

Проводимость твердого кри­сталлического тела изменяется от деформации из-за увеличе­ния или уменьшения (растяжение, сжатие) междуатомных расстояний приводит к изме­нению концентрации и под­вижности носителей заряда. Концентрация меняется вследствие изменения шири­ны энергетических зон полу­проводника и смещения при­месных уровней, что приво­дит к изменению энергии активации носителей заряда и, следовательно, к уменьше­нию или увеличению концен­трации. Подвижность меня­ется из-за увеличения или уменьшения амплитуды ко­лебания атомов при их сбли­жении или удалении.

Изменение удельной проводимости полупроводников при оп­ределенном виде деформации характеризует тензочувствительность:

.

Тензочувствительность представляет собой отношение относительного изменения удельного сопротивления к относительной деформации в данном направлении.

Фотопроводимость полупроводников. Перевод электрона в свободное состояние или образование дыр­ки может осуществляться также под воздействием света. Энергия падающего на полупроводник света передается электронам. При этом энергия, передаваемая каждому электрону, зависит от часто­ты световых колебаний и не зависит от яркости света (силы света). С увеличением яркости света возрастает число поглощающих свет электронов, но не энергия, получаемая каждым из них.

Для определенного полупроводника существует пороговая дли­на волны, определяемая энергией кванта, достаточной для возбуж­дения и перехода электрона с самого верхнего уровня валентной зоны на самый нижний уровень зоны проводимости, т.е. равная ширине запрещенной зоны.

Фотопроводимость полупроводника определяется:

,

где Δn - дополнительное число электронов, образовавшихся в по­лупроводнике вследствие облучения его светом.

Освобожденные светом электроны находятся в зоне проводи­мости очень короткое время (10-3 – 10-7 с). При отсутствии внешне­го электрического поля они хаотически перемещаются в между­атомных промежутках. Когда к кристаллу приложена разность по­тенциалов, они участвуют в электропроводности. После окончания освещения образца электроны переходят на более низкие энерге­тические уровни - примесные или в валентную зону. При непре­рывном освещении полупроводника устанавливается динамичес­кое равновесие между образующимися дополнительными (нерав­новесными) носителями и уходящими на нижние уровни, т.е. устанавливается динамическое равновесие между процессами ге­нерации носителей заряда и их рекомбинацией.

Термоэлектрические явления в полупроводниках. К важнейшим термоэлектрическим явлениям в полупроводни­ках относятся эффекты Зеебека, Пельтье и Томпсона.

Сущность явления Зеебека состоит в том, что в электрической цепи, состоящей из последовательно соединенных разнородных полупроводников или полупроводника и металла, возникает ЭДС, если между концами этих материалов существует разность температур. Свободные носители заряда у горячего конца имеют более высокие энергии и количество их больше, чем у холодного. Поэтому больше поток носителей от горячего конца к холодному. В результате на концах полупроводника накапливается заряд. По знаку термоЭДС можно судить о типе электропроводности полупроводника.

Эффект, обратный явлению Зеебека, называется эффектом Пельтье. Он состоит в том, что при прохождении тока через контакт двух разнородных полупроводников или полупроводника и металла происходит поглощение или выделение теплоты в зависимости от направления тока.

Эффект Томпсона заключается в выделении или поглощении теплоты при прохождении тока в однородном материале, в котором существует градиент температур. Наличие градиента температур в полупроводнике приводит к образованию термо-ЭДС.

Гальваномагнитные эффекты в полупроводниках возникают при воздействии электрического и магнитного полей. Один из них эффект Холла заключается в следующем. Если полупроводник, вдоль которого течет электрический ток, поместить в магнитное поле, перпендикулярное направлению тока, то в полупроводнике возникнет поперечное электрическое поле, перпендикулярное току и магнитному полю.

На рисунке 9 изображена пластинка полупроводника п-типа. Электрическое поле Е направлено параллельно оси Z, а магнитное поле Н – вдоль оси Y. На движущийся в магнитном поле электрон действует сила Лоренца, которая отклоняет его в направлении, перпендикулярном направлению магнитного поля. В результате электроны накапливаются у одного из торцов образца. На противоположной грани создается положительный не скомпенсированный заряд, обусловленный ионами донорной примеси. Такое накопление зарядов происходит до тех пор, пока действие возникшего электрического поля не уравновесит действующую на электрон силу Лоренца.

Рисунок 9