
- •1. Основные понятия
- •1.1. Современное состояние микроэлектроники
- •1.1.1. Роль электроники в мировой сфере производства и потребления
- •1.1.2. Зачем России своя электроника
- •1.2.1. Классификация интегральных микросхем
- •1.2.2. Технологические операции
- •1.2.3. Элементы микросхем
- •1.2.4. Проблемы в производстве
- •Контрольные вопросы
- •2. Материалы электронной компонентной базы
- •2.1. Классификация материалов
- •2.2. Классификация полупроводниковых материалов
- •2.2.1. Собственные и примесные полупроводники
- •2.2.3. Полупроводниковые соединения
- •Контрольные вопросы
- •3. Конструкции и технологические последовательности изготовления полупроводниковых приборов и ИС
- •3.1. Развитие технологии производства изделий электронной техники
- •3.2. Методы изоляции элементов монолитных биполярных ИС
- •3.3. Методы изоляции МДП-транзисторов
- •Контрольные вопросы
- •4. Химическая обработка и травление кремниевых пластин
- •4.1. Жидкостная очистка поверхности пластин
- •4.2. Травление
- •4.3. Пористый кремний
- •Контрольные вопросы
- •5. Плазменная обработка и травление материалов электронной компонентной базы
- •5.1. Ионное травленне
- •5.2. Плазмохимическое травление
- •5.3. Реактивное ионное травление
- •Контрольные вопросы
- •6. Термическая диффузия
- •6.1. Процессы диффузионного легирования
- •6.2. Уравнение диффузии
- •6.2.1. Диффузия из одной полуограниченной области в другую
- •6.2.2. Факторы, влияющие на величину коэффициента диффузии
- •6.3. Моделирование процессов диффузии в твердом теле
- •6.3.1. Диффузия из одной полуограниченной области в другую
- •6.3.2. Количество примеси, введенной из источника неограниченной мощности
- •6.3.3. Диффузия из слоя конечной толщины
- •6.3.4. Диффузия из бесконечно тонкого слоя (точечный источник)
- •6.6. Формула Пуассона
- •6.7. Диффузия в прямоугольное окно
- •6.8. “Разгонка” примеси. Многостадийная диффузия
- •6.9. Диффузия примеси в гетерогенной системе
- •6.10. Диффузия в область ограниченных размеров
- •6.11. Определение зависимости D(N)
- •6.12. Результирующее примесное распределение
- •6.13. Методы диффузионного легирования
- •6.13.1 Диффузия из пленок, наносимых на поверхность полупроводника
- •6.13.2 Диффузия в ампуле
- •6.13.3 Диффузия в потоке газа-носителя
- •6.13.4 Метод параллельного источника
- •6.14. Источники диффузанта
- •6.14.2 Алюминий (Al), галлий (Ga) и индий (In)
- •6.14.3 Фосфор (P) мышьяк (As) и сурьма (Sb)
- •6.14.4 Эффект вытеснения коллекторного перехода
- •6.14.5 Другие диффузанты
- •6.15. Выбор легирующей примеси
- •Контрольные вопросы
- •7. Ионное легирование
- •7.1. Общие принципы процесса ионной имплантации
- •7.2. Пробеги и дисперсии пробегов ионов
- •7.2.1. Распределение пробегов ионов
- •7.2.2. Боковое рассеяние ионов
- •7.2.3. Ионное каналирование
- •7.3. Влияние радиационных дефектов
- •7.4. Отжиг дефектов ионно-имплантированных слоев
- •7.4.1. Примеры профилей распределения ионов
- •7.4.2. Лазерный и электронно-лучевой отжиг
- •7.5. Влияние технологических факторов
- •7.5.1. Диффузия имплантированных примесей
- •7.5.2. Технология маскирования при ионной имплантации
- •7.5.3. Гетерирование
- •7.6. Преимущества и недостатки ионного легирования
- •Контрольные вопросы
- •8. Методы создания диэлектрических слоев
- •8.1. Термическое окисление
- •8.2. Осаждение пленок диоксида кремния
- •8.3. Получение пленок нитрида кремния
- •8.4. Плазмохимическое осаждение
- •8.5. Особенности окисления некоторых материалов
- •8.6. Воспроизведение рельефа поверхности
- •Контрольные вопросы
- •9. Термическое окисление кремния
- •9.1. Методы получения пленок оксида кремния
- •9.2. Механизмы окисления кремния
- •9.3. Кислород в кремнии
- •9.4. Свойства и применения пленок оксида кремния
- •9.5. Модель процесса
- •9.6. Перераспределение примеси при окислении
- •9.7. Особенности технологии МДП структур
- •9.7.1. Влияние режимов окисления и термообработок на свойства МДП структур на основе кремния
- •9.7.2. Механизмы нестабильности МДП структур
- •9.7.3 Методы повышения стабильности МДП структур
- •Контрольные вопросы
- •10. Методы литографии
- •10.1. Электронно-лучевая литография
- •10.2. Рентгеновская литография
- •10.3. Ионно-лучевая литография
- •10.4. Сравнение и тенденция развития процессов литографии
- •Контрольные вопросы
- •11. Технология фотолитографии
- •11.1. Стандартная фотолитография
- •11.2. Процесс переноса изображения в фотолитографии
- •11.3. Фотолитография в глубоком ультрафиолете
- •11.4. Волновые эффекты при экспонировании
- •Контрольные вопросы
- •12. Физико-химические основы технологии эпитаксиальных слоев
- •12.1. Эпитаксия из газовой фазы
- •12.1.2. Реакторы установок эпитаксиального наращивания
- •12.1.3. Легирование и автолегирование эпитаксиальных слоев
- •12.1.4. Технология процесса эпитаксии кремния
- •12.2. Молекулярно-лучевая эпитаксия
- •12.3. Эпитаксия кремния на изолирующей подложке
- •12.4. Получение эпитаксиальных слоев полупроводниковых соединений
- •Контрольные вопросы
- •13. Технология многоуровневой металлизации
- •13.1. Термическое испарение в вакууме
- •13.1.1. Физические основы термического вакуумного напыления
- •13.1.2. Конденсация вещества на подложке
- •13.1.3. Оборудование процесса термического вакуумного напыления
- •13.1.4. Распределение толщины пленки по подложке
- •13.2. Методы ионно-плазменного распыления
- •13.2.1. Механизмы распыления вещества потоком ионов
- •13.2.2. Ионно-плазменное распыление на постоянном токе (катодное распыление)
- •Контрольные вопросы
- •14. Монтажно-сборочные операции
- •14.1. Разделение пластин на кристаллы
- •14.2. Присоединение кристаллов к корпусу
- •14.2.1. Присоединение кристалла к основанию корпуса
- •14.2.2. Присоединение выводов
- •14.2.3. Герметизация
- •14.3. Монтаж приборов в корпус
- •Контрольные вопросы
- •15. Контрольные операции
- •15. 1. Функциональный контроль приборов
- •15.2. Испытания и измерения
- •15.2.1. Контроль технологического процесса
- •15.2.2. Причины брака
- •15.2.3. Методы контроля толщины пленок
- •15. 3. Заключительные операции
- •15.3.1. Герметизация кристалла
- •15.3.2. Контроль герметичности
- •Контрольные вопросы
60
5.2. Плазмохимическое травление
Более универсальным является плазмохимическое травление. В данном методе газовый разряд возбуждается в химически активных газах, что приводит к образованию химически активных частиц (ионов и радикалов). Химически активные частицы, взаимодействуя с поверхностью, образуют летучие соединения, которые с помощью системы откачки удаляются из зоны реакции. В отличие от ионного травления данный метод отличается высокой избирательностью (селективностью) травления, но имеет место боковое травление.
Газовое травление. Загрязнения при газовом травлении удаляются вместе с поверхностны слоем пластин или подложек.
В качестве газов-реагентов для травления кремниевых пластин можно применять галогены, галогеноводороды, соединения серы, пары воды. Небольшие количества этих газов добавляют к газуносителю (водороду или гелию) и транспортируют в камеру установки.
Травление кремния хлористым водородом широко используется перед выращиванием на пластинах кремниевых слоев
Si (тв.) + 4НСl (газ) = SiСl4 (газ) + 2Н2 (газ).
Пары хлористого водорода доставляются водородом в реакционную камеру установки эпитаксиального наращивания, где расположены кремниевые пластины, нагретые до температуры 1150…1250 оС.
Газовое травление по сравнению с жидкостным позволяет получать более чистые поверхности. Во многих случаях газовое травление имеет ограниченное применение из-за высоких температур обработки и необходимости использования особо чистых газов. Однако в тех случаях, когда газовое травление совместимо с последующим процессом (например, с выращиванием на кремниевых пластинах кремниевых слоев), его применение целесообразно.
Плазмохимическое травление. Плазмохимическое травление, как о ионное, проводят в вакуумных установках и также используют плазму газового разряда. Плазмохимическое травление (в отличие от чисто физического распыления при иоином травлении) имеет химическую природу. Оно основано на использовании обладающих большой реакционной способностью химически активных частиц, получаемых в плазме газового разряда.
Процесс плазмохимического травления можно разделить на ряд этапов: доставка плазмообразующего газа, пара или смеси в камеру вакуумной установки; образование химически активных частиц в газовом разряде; доставка их к обрабатываемой поверхности; химические реакции с образованием легко летучих соединений; десорбция и удаление образующихся летучих соединений через откачную систему вакуумной установки.
Плазмообразующие газы выбирают исходя из свойств обрабатываемого материала. Для травления кремния и некоторых металлов применяют галогеносодержащие молекулярные газы, так как именно в их плазме
61
образуются необходимые химически активные частицы, переводящие поверхностные слои в летучие соединения. Для разбавления и обеспечения требуемых параметров травления в плазму дополнительно вводят аргон, кислород, азот. Наиболее часто для травления кремния и его соединений применяют смесь фреона-14 СF4 с (2...8) % кислорода. Присутствие кислорода повышает скорость травления и качество очистки. Фреон-14 относительно инертен, при любых температурах он не взаимодействует с кремнием. В плазме химически активные частицы образуются в результате взаимодействия молекул газа с ускоренными электронами, которые в отличие от тяжелых частиц обладают существенно большими энергиями. В плазме фреона-14 с кислородом образование химически активных частиц – возбужденного атома фтора F*, положительно заряженного радикала СF3+,
атомарного кислорода О – сопровождается реакциями:
СF4+е→ СF3++ F*+2е О2+ е→2 О + е →О+О–.
Травление кремния и его соединений сопровождается реакциями:
Si + 4 F*→ SiF4↑
SiО2+ 4 F*→SiF4↑ + О2 ↑
3 SiО2 + 4 СF3+ → 3 SiF4↑ + 2СО2↑ + 2СО↑ + е; Si3N4 +12 Si*→ 3 SiF4 +2 N2↑
Тетрафторид кремния SiF4 – летучее соединение, легко удаляемое из рабочей камеры установки откачкой. На поверхности кремниевых пластин
возможно образование углерода:
Si+ СF3+→С+ 3 F* + Si + е
Присутствие в плазме кислорода способствует очистке поверхности от углерода за счет его оксидирования до СО или СО2. Кислород также способствует повышению концентрации возбужденных атомов фтора в результате образования радикалов СОF* и их диссоциации:
СОF*→ F*+ СО↑
Это увеличивает скорость травления кремния. Атомарный кислород также очищает поверхность от органических загрязнений. При плазмохимическом травлении физическое распыление практически отсутствует, так как энергия ионов не превышает 100 эВ.
В зависимости от конструкции установок различают плазменное и радикальное плазмохимическое травление.
Плазменное травление осуществляют непосредственно в плазме газового травления, т. е. с участием всех химически активных частиц, как с большим (F* – 0,1...1 с), так и с малым временем жизни (СF3+ – 10 мкс). В камерах диодного типа (рис. 5.4) пластины кремния помещают на нижнем медленно вращающемся электроде (0,1 об/с). Пластины электрически изолированы от электрода, чтобы исключить ионную бомбардировку.

62
Рис. 5.4. Схема вакуумной камеры диодного типа для плазмохимического травления непосредственно в плазме:
1 – подача рабочего газа; 2 – вакуумная камера; 3 – электрод; 4 – откачной патрубок; 5 – пластины (подложки); 6 – подложкодержатель; 7 – изоляционное покрытие
Радикальное плазмохимическое травление проводят в области вакуумной камеры отделенной от плазмы газового разряда перфорированным металлическим экраном (рис. 5.5) или магнитными электрическими полями. ВЧ-плазма возбуждается между цилиндрическими поверхностями рабочей камеры и экрана. Травление осуществляется только нейтральными химически активными атомами О или радикалами F* с большим временем жизни, проникающими из плазмы в зону расположения пластин. Заряженные частицы плазмы не могут попасть к поверхности пластин через отверстия цилиндрического экрана. В зоне, свободной от заряженных частиц, возбужденные атомы фтора и атомарный кислород, многократно соударяясь с молекулами рабочего газа, движутся разупорядоченно, что обеспечивает высокую однородность травления от пластины к пластине и по площади каждой пластины.
Рис. 5.5. Схема вакуумной камеры для радикального плазмохимического травления:
1 – кварцевая камера; 2 – перфорированный цилиндр; 3 – кассета с пластинами (подложками); 4 – ВЧ-индуктор; 5 – подача рабочего газа; 6 – откачной патрубок
Так как возбужденные атомы и свободные радикалы отличаются высокой реакционной способностью, то эффективность травления существенно повышается. По сравнению с ионным травлением при одинаковых параметрах разряда скорость возрастает более чем на порядок.
63
Благодаря электрической активации газов плазмохимическое травление проводится при существенно меньших температурах 100...300 °С по сравнению с обычным газовым травлением. Плазмохимическое травление изза химического механизма обладает высокой избирательностью относительно различных материалов (например, F+ травит кремний значительно быстрее, чем диоксид кремния).
Благодаря невысокой энергии частиц, поступающих на обрабатываемую поверхность, радиационные дефекты незначительны.
Химический механизм травления обусловливает наличие боковой скорости травления, что является недостатком при локальной обработке. К недостаткам плазмохимического травления можно также отнести: ограниченное количество соединений для получения в плазме химически активных частиц, обеспечивающих образование летучих веществ; сложность химических реакций, протекающих в плазме и на обрабатываемой поверхности; большое число взаимосвязанных технологических и конструктивных параметров.
5.3. Реактивное ионное травление
Наиболее широкие возможности открывает метод ионно-химического травления, называемый также реактивным ионным травлением. В нем для удаления поверхностного слоя материала используется как кинетическая энергия ионов химически активных газов, так и энергия их химических реакций с атомами или молекулами объекта травления.
Реактивное ионное (называемое также ионно-химическим) травление по механизму процесса является комбинированным методом. Удаление обрабатываемого материала происходит в результате его распыления ускоренными нонами и образования легколетучих соединений при взаимодействии с химически активными частицами плазмы. От плазмохимического травления оно отличается тем, что энергия ионов больше и достаточна для распыления, а от ионного травления – тем, что используется не инертная, а содержащая химически активные частицы плазмы. При этом физическое распыление интенсифицирует химические реакции, а химические реакции, ослабляя межатомные связи на обрабатываемой поверхности, увеличивают скорости распыления.
По аналогии с ионным и плазмохимическим травлением реактивное ионное травление может выполняться при расположении обрабатываемых пластин (подложек) в плазме газового разряда (реактивное ионно-плазменное травление) или в вакууме и подвергаться воздействию пучка ионов, полученных в автономно расположенном источнике (реактивное ионнолучевое травление). Для реактивного ионно-плазменного и ионно-лучевого травления применяют те же рабочие газы, что и для плазмохимического травления.
Оборудование для реактивного ионно-плазменного травления аналогично установкам ионно-плазменного травления. Пластины располагают на электроде, не изолированном от нижнего электрода (см. рис.