Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Микра. Серологические реакции, пцр

.docx
Скачиваний:
9
Добавлен:
30.03.2015
Размер:
35.99 Кб
Скачать

Серологические реакции (продолжение...)

Обычно тесты иммунодиффузии используют для идентификации белков в биологических жидкостях, таких, как сыворотка крови, цереброспинальная жидкость, секреты желез или экстракты различных органов и т.д.

Иммуноэлектрофорез (ИЭФ) представляет собой сочетание электрофореза в геле с иммунодиффузией. Принцип ЙЭФ состоит в следующем. Сначала проводят электрофоретическое разделение белков (смеси антигенов) в забуференном агаровом геле. Затем в канавку, которая идет параллельно направлению миграции белков, вносят преци-питирующую иммунную сыворотку. Антигены и антитела диффундируют в геле навстречу друг другу, в месте их взаимодействия образуются дугообразные линии преципитации, количество, расположение и форма которых дают представление о составе исходной смеси антигенов. С помощью ИЭФ успешно анализируются белки сыворотки крови, спинномозговой жидкости, мочи, белки микробного происхождения. В клинической практике ИЭФ используют при диагностике имму-нодефицитных состояний, проявляющихся дисгаммаглобулинемией.

В результате комбинации с другими методами анализа предложены диск-иммуноэлектрофорез, иммуноэлектрофокусирование, ракетный иммуноэлектрофорез, радиоиммуноэлектрофорез, иммуноблотинг.

Иммуноблотинг - один из современных высокоточных вариантов электрофореза с анализом разделенных белков иммунологическим методом. Тест осуществляется в три этапа: сначала проводится-электрофорез в полиакриламидном геле в присутствии ионного детергента додецилсульфата натрия. Разделенные антигены переносятся за счет капиллярных сил или дополнительного электрофореза на иммобилизующую нитроцеллюлозную мембрану. Находящиеся на мембране антигены анализируются с помощью меченых ферментной или радиоактивной меткой антител (иммуноферментным или радиоиммунным методом).

Реакция Кумбса (антиглобулиновый тест). Неполные антитела в отличие от нормальных моновалентны, поскольку они имеют один активный центр, способный взаимодействовать только с одним эпи-топом: в то время как другие эпитопы остаются не связанными. В результате этого не происходит образования крупных комплексов, выпадающих в осадок в растворе электролита. Последние проявляются только в реакциях с бивалентными антителами. Для исправления этого положения вводится антиглобулиновая сыворотка (АГС), содержащая бивалентные антитела к глобулину, которая свяжет между собой моновалентные антитела, содержащиеся в исследуемом материале Таким образом произойдет визуально видимая реакция гемагглютинации или агглютинация, свидетельствующая о наличии в исследуемой сыворотке неполных (моновалентных) антител. Например, в случае беременности резус-отрицательной женщины резус-положительным плодом у нее в сыворотке крови появятся неполные антитела. Для их выявления в пробирку с исследуемой сывороткой крови вносят резус-положительные эритроциты, а затем АГС. Появление ге-магглютинации свидетельствует о положительной реакции.

Реакции, протекающие с нейтрализацией антигена

Реакции нейтрализации основаны на способности антител нейтрализовать in vitro биологически-активные антигенсодержащие субстраты: токсины, вирусы, яды змей и т.п. Реакция состоит в смешивании биологически-активного вещества с сывороткой, содержащей антитела, и выявлении нейтрализации его активности в биологическом тесте на животном или в культуре ткани.

Реакция флоккуляции применяется для титрования антитоксических сывороток, токсинов и анатоксинов, а также для определения типа токсина. Реакция флоккуляции основана на способности токсина или анатоксина при смешивании в эквивалентных соотношениях с антитоксической сывороткой образовывать помутнение, а затем рыхлый осадок (флоккулят). Механизм реакции флоккуляции аналогичен таковому реакции преципитации.

Одним из вариантов реакции нейтрализации токсина антитоксином является реакция нейтрализации гемолитических свойств токсина специфической антисывороткой.

Реакция нейтрализации in vivo может быть поставлена для выявления антитоксина в организме исследуемого человека. С этой целью в область предплечья внутрикожно вводят незначительное количество токсина, измеряемое в кожных дозах. Отсутствие покраснения и припухлости в месте введения токсина свидетельствует о его нейтрализации циркулирующим в крови антитоксином. Данная реакция была предложена Шиком для выявления иммунитета к дифтерии и получила название кожной пробы Шика. Она применяется для решения вопроса о целесообразности иммунизации детей дифтерийным анатоксином с целью профилактики дифтерии.

Реакция нейтрализации вирусов. При перенесении многих вирусных заболеваний или вакцинации в сыворотке крови людей обнаруживаются антитела, нейтрализующие инфекционные свойства соответствующих вирусов. Их обнаруживают при смешивании испытуемой сыворотки с вирусом с последующим заражением чувствительного животного либо клеточной культуры. Через несколько суток регистрируют результаты опытов по гибели подопытного животного или ЦПД в пробирке с клеточной культурой. Реакция нейтрализации вирусов нашла широкое применение в вирусологической практике для определения вида (типа) исследуемого вируса и титра вируснейтрализующих антител. В этих случаях используют соответствующие диагностические антисыворотки.

Реакция торможения гемагглютинации (РТГА) является вариантом реакции нейтрализации вируса. Она основана на способности противовирусной антисыворотки подавлять вирусную гемагглютинацию эритроцитов определенных видов животных (кур, гусей и др.). Это объясняется способностью специфических антисывороток нейтрализовать вирусные гемагглютинины. РТГА широко применяется для идентификации и типирования вирусов, а также для выявления антигемагглютининов в сыворотке крови исследуемых людей.

Реакции, протекающие с участием комплемента

Реакция связывания комплемента (РСК). Предложена Ж. Бордэ и О. Жангу в 1901 г. и, несмотря на столь длительное применение в лабораторной практике, не утратила своего значения по настоящее время. Более того, диапазон ее применения значительно расширился по мере открытия ранее неизвестных возбудителей новых инфекционных заболеваний: бактерий, микоплазм, вирусов, грибов и других патогенов. Данная реакция используется для серодиагностики и обнаружения антигена в исследуемом материале, сероидентификации выделен ных культур. Она характеризуется высокой чувствительностью и достаточной специфичностью, а также возможностью применения как корпускулярных, так и растворимых антигенов. Последнее связано с тем, что комплемент связывается с Fc-фрагментом антител независимо от их специфичности. Таким образом, способность комплемента связываться только с комплексом антиген - антитело за счет Fc-фрагментов последнего и не вызывать гемолиз сенсибилизированных эритроцитов (тест-система) послужила основой для широкого применения РСК в лабораторной практике в течение прошедшего столетия.

Для постановки РСК требуется предварительная подготовка ингредиентов реакции, особенно комплемента, в качестве которого используют сыворотку крови морской свинки с установкой рабочей дозы. Однако за последние десятилетия выпускается сухой оттитрованный комплемент, что значительно облегчило постановку реакции. Исследуемые сыворотки крови и антигены обязательно контролируются на антикомплементарность.

Постановку основного опыта производят в пробирках путем внесения в нее определенных объемов сыворотки крови, антигена и рабочей дозы комплемента. Смесь инкубируют в термостате при 37°С в течение часа. Регистрацию результатов реакции проводят по гемолизу сенсибилизированных эритроцитов барана. Их приготавливают при смешивании гемолитической сыворотки кролика с эритроцитами барана. При внесении комплемента в эту смесь происходит реакция гемолиза. Таким образом, в тех случаях, когда комплемент не связывается с исследуемой системой антиген - антитело, т.е. остается свободным, наблюдается полный гемолиз бараньих эритроцитов, который свидетельствует об отрицательной реакции. Отсутствие гемолиза указывает на связывание комплемента системой антиген - антитело, т.е. на положительную реакцию, которая обозначается крестами. Интенсивность задержки гемолиза оценивается по четырехкрестной системе, при этом полное отсутствие гемолиза обозначается ++++.

Реакция иммунного лизиса. В основе реакции лежит способность специфических антител образовывать иммунные комплексы с клетками, в том числе с эритроцитами, бактериями, что приводит к активации системы комплемента по классическому пути и лизису клеток. Из реакций иммунного лизиса чаще других применяется реакция гемолиза и редко - реакция бактериолиза (главным образом при дифференциации Холерных и холероподобных вибрионов).

Реакция гемолиза. Под влиянием реакции с антителами в присутствии комплемента мутная взвесь эритроцитов превращается в ярко-красную прозрачную жидкость - «лаковую кровь» вследствие выхода гемоглобина. При постановке диагностической реакции связывания комплемента (РСК) реакция гемолиза используется как индикаторная: для тестирования присутствия или отсутствия (связывания) свободного комплемента.

Реакция локального гемолиза в геле (реакция Ерне) является одним из вариантов реакции гемолиза. Она позволяет определить число антителообразующих клеток. Количество клеток, секретирую-щих антитела - гемолизины, определяют по числу бляшек гемолиза, возникающих в агаровом геле, содержащем эритроциты, суспензию клеток исследуемой лимфоидной ткани и комплемент.

Реакция иммобилизации. Способность антисыворотки вызывать иммобилизацию подвижных микроорганизмов связана с реакцией между микробными антигенами и специфическими антителами в присутствии комплемента. Иммобилизующие антитела обнаружены при сифилисе, холере и некоторых других инфекционных заболеваниях, возбудители которых являются подвижными микроорганизмами.

Реакции, протекающие с участием фагоцитов

Опсонофагоцитарная реакция проводится для определения способности антител и комплемента усиливать фагоцитоз. Антитела, стимулирующие фагоцитоз, называют опсоншами (греч. opsonion - готовить пищу). Опсонизация определяется тем, что антитела, присоединившиеся к микроорганизму, обуславливают его быстрое поглощение фагоцитом благодаря тому, что фагоцит обладает рецепторами для Fc-фрагмента иммуноглобулина, присоединившегося к микробной клетке. Комплемент тоже обладает опсонизирующими свойствами, так как фагоцит содержит рецепторы и к компонентам комплемента. Для количественной оценки опсонического эффекта определяют опсонический индекс - отношение показателей фагоцитоза неопсонизированных микроорганизмов к показателям фагоцитоза (фагоцитарный индекс и фагоцитарное число) после обработки фагоцитоза антителами и/или комплементом.

Реакции, протекающие с участием меченых антигенов или антител

Тесты основаны на выявлении взаимодействия антигена с антителом с образованием иммунного комплекса антиген - антитело по метке одного из участников реакций, выявляемой либо визуально, либо с помощью специальных высокочувствительных приборов, позволяющих количественно выявить меченый субстрат и, следовательно, искомый антиген или антитело. В качестве метки используют либо флюоресцирующий в ультрафиолетовом свете краситель (изоционат флюоресцеина), либо фермент (пероксидаза, щелочная фосфатаза), выявляемый по изменению окраски соответствующего субстрата (иммуноферментный анализ - ИФА), либо изотоп, выявляемый радиометрией (радиоиммунный анализ - РИА). В отечественных лабораториях в течение многих лет используется иммунофлюоресцентный метод, разработанный Альбертом Кунсом и получивший его имя. Одна модификация метода, получившая название прямого метода Кунса, включает обработку материала на предметном стекле (мазок мокроты, срез ткани) меченой флюорохромом диагностической антисывороткой. Если на предметном стекле был искомый антиген, антитела фиксируются на антигене, и после отмывки стекла от несвязавшихся антител антиген выявляется в люминесцентном микроскопе по яркому свечению. Другая модификация - непрямой метод Кунса - основан на использовании меченой антиглобулиновой сыворотки. От прямого метода Кунса этот вариант отличается тем, что используется немеченая диагностическая сыворотка, а ее присоединение к антигену выявляется с помощью меченой антиглобулиновой сыворотки, выявляющей иммуноглобулин немеченой диагностической сыворотки, присоединившийся к искомому антигену.

Более современные методы выявления антигенов либо антител имеют множество вариантов. Большинство из них используют «твердофазную» технологию, основанную на том, что один из стандартизованных компонентов реакции (антиген или антитело) заранее в производственных фирменных лабораториях фиксируется в лунках специально приготовленных полистироловых или поливинилхлорид-ных панелей. Исследуемый материал помещается в эти лунки. Для выявления антигена могут быть использованы лунки, в которых фиксированы антитела. Если в материале содержался антиген, то он присоединяется к фиксированным антителам и сам оказывается фиксированным в лунке. Для выявления этого антигена используются меченые антитела, и после ряда отмывок для удаления несвязвавшихся компонентов эти антитела выявляются в соответствии со своей меткой. Для выявления антител могут быть использованы лунки, в которых фиксирован антиген. Добавленные антитела фиксируются на антигене, остаются в лунке и могут быть выявлены с помощью меченых антиглобулиновых антител. Мы привели примеры вариантов использования твердофазных методов и меченых компонентов реакций. Могут быть и другие варианты. Так, например, клетки крови или костного мозга могут быть обработаны флюоресцирующими антителами в жидкости. При этом клетки могут быть обработаны разными антителами, помеченными разными флюорохромами. Пропуская такие взвеси через специальный проточный флюориметр, можно одновременно выявить и подсчитать разные виды клеток. Присоединив к проточному флюоримет-ру прибор, именуемый сортером, можно выделить или удалить из взвеси те клетки, которые необходимы исследователю или врачу.

Современные иммунофлюоресцентные, иммуноферментные и радиоиммунные методы отличаются высокой чувствительностью (вы-явление 0,0005-0,00005 мкг/мл белка), специфичностью, воспроизводимостью, возможностью выявления широкого круга биологических веществ. Современные производственные фирмы готовят все необходимые ингредиенты и оборудование для их использования.

Таким образом, развитие серологических методов диагностики происходит в настоящее время в следующем направлении:

использование меченых антигенов или антител с помощью флюорохрома, фермента либо радиоактивной метки;

постановка реакции на твердофазном носителе - полистеро-ловом планшете с лунками с нанесенными в них антигенами или антителами.

Это позволяет повысить чувствительность метода, автоматизировать постановку реакции и использовать специальную аппаратуру для снятия результатов.

Полимера́зная цепна́я реа́кция (ПЦР) — экспериментальный метод молекулярной биологии, позволяющий добиться значительного увеличения малых концентраций определённых фрагментов нуклеиновой кислоты (ДНК) в биологическом материале (пробе).

Помимо амплификации ДНК, ПЦР позволяет производить множество других манипуляций с нуклеиновыми кислотами (введение мутаций, сращивание фрагментов ДНК) и широко используется в биологической и медицинской практике, например, для диагностики заболеваний (наследственных, инфекционных), для установления отцовства, для клонирования генов, выделения новых генов.Содержание [убрать]

1 История

2 Проведение ПЦР

2.1 Компоненты реакции

2.2 Праймеры

2.3 Амплификатор

3 Ход реакции

3.1 Денатурация

3.2 Отжиг

3.3 Элонгация

4 Разновидности ПЦР

5 Применение ПЦР

5.1 Криминалистика

5.2 Установление отцовства

5.3 Медицинская диагностика

5.4 Персонализированная медицина

5.5 Клонирование генов

5.6 Секвенирование ДНК

5.7 Мутагенез

6 См. также

7 Примечания

8 Литература

9 Ссылки

[править]

История

В начале 1970-х годов норвежскому ученому Хьеллю Клеппе из лаборатории нобелевского лауреата Хара Гобинды Хораны пришла в голову мысль, что можно амплифицировать ДНК с помощью пары коротких одноцепочечных молекул ДНК — синтетических праймеров[1]. Однако, в то время эта идея осталась нереализованной. Полимеразная цепная реакция (ПЦР) была изобретена в 1983 году американским биохимиком Кэри Муллисом. Его целью было создание метода, который бы позволил амплифицировать ДНК в ходе многократных последовательных удвоений исходной молекулы ДНК с помощью фермента ДНК-полимеразы. Первая публикация по методу ПЦР появилась в ноябре 1985 года в журнале Science[2]) Через 8 лет после этого, за изобретение метода ПЦР, К.Муллис получил Нобелевскую премию[3].

В начале использования метода после каждого цикла нагревания — охлаждения приходилось добавлять в реакционную смесь ДНК-полимеразу, так как она инактивировалась при высокой температуре, необходимой для разделения цепей спирали ДНК. Процедура проведения реакции была сравнительно неэффективной, требовала много времени и фермента. В 1986 году метод полимеразной цепной реакции был существенно улучшен. Было предложено использовать ДНК-полимеразы из термофильных бактерий[4]. Эти ферменты оказались термостабильными и были способны выдерживать множество циклов реакции. Их использование позволило упростить и автоматизировать проведение ПЦР. Одна из первых термостабильных ДНК-полимераз была выделена из бактерий Thermus aquaticus и названа Taq-полимеразой. Недостаток этой полимеразы заключается в том, что вероятность внесения ошибочного нуклеотида у неё достаточно высока, так как у этого фермента отсутствуют механизмы исправления ошибок (3'→5' экзонуклеазная активность). Полимеразы Pfu и Pwo, выделенные из архей, обладают таким механизмом, их использование значительно уменьшает число мутаций в ДНК, но скорость их работы (процессивность) ниже, чем у Taq. Сейчас применяют смеси Taq и Pfu, чтобы добиться одновременно высокой скорости полимеризации и высокой точности копирования.

В момент изобретения метода Кэри Маллис работал химиком-синтетиком (он синтезировал олигонуклеотиды, которые применялись тогда для выявления точковых мутаций по гибридизации с геномной ДНК) в компании Цетус (en:Cetus Corporation), которая и запатентовала метод ПЦР. В 1992 году Цетус продала права на метод и патент на использование Taq-полимеразы компании Хофман-Ла Рош за 300 млн долларов. Однако оказалось, что Taq-полимераза была охарактеризована советскими биохимиками А. Калединым, А. Слюсаренко и С.Городецким в 1980 году[5], а также, за 4 года до этой советской публикации, то есть в 1976 году, — американскими биохимиками Alice Chien, David B.Edgar и John M. Trela.[6] В связи с этим компания Промега (Promega) пыталась в судебном порядке заставить Рош отказаться от исключительных прав на этот фермент[7]. Американский патент на метод ПЦР истёк в марте 2005 г.

[править]

Проведение ПЦР

Метод основан на многократном избирательном копировании определённого участка ДНК при помощи ферментов в искусственных условиях (in vitro). При этом происходит копирование только того участка, который удовлетворяет заданным условиям, и только в том случае, если он присутствует в исследуемом образце. В отличие от амплификации ДНК в живых организмах, (репликации), с помощью ПЦР амплифицируются относительно короткие участки ДНК. В обычном ПЦР-процессе длина копируемых ДНК-участков составляет не более 3000 пар оснований (3 kbp[8]). С помощью смеси различных полимераз, с использованием добавок и при определённых условиях длина ПЦР-фрагмента может достигать 20—40 тысяч пар нуклеотидов. Это всё равно значительно меньше длины хромосомной ДНК эукариотической клетки. Например, геном человека состоит примерно из 3 млрд пар оснований[9].

[править]

Компоненты реакции

Для проведения ПЦР в простейшем случае требуются следующие компоненты:

ДНК-матрица, содержащая тот участок ДНК, который требуется амплифицировать.

Два праймера, комплементарные противоположным концам разных цепей требуемого фрагмента ДНК.

Термостабильная ДНК-полимераза — фермент, который катализирует реакцию полимеризации ДНК. Полимераза для использования в ПЦР должна сохранять активность при высокой температуре длительное время, поэтому используют ферменты, выделенные из термофилов — Thermus aquaticus (Taq-полимераза), Pyrococcus furiosus (Pfu-полимераза), Pyrococcus woesei (Pwo-полимераза) и другие.

Дезоксирибонуклеозидтрифосфаты (dATP, dGTP, dCTP, dTTP).

Ионы Mg2+, необходимые для работы полимеразы.

Буферный раствор, обеспечивающий необходимые условия реакции — рН, ионную силу раствора. Содержит соли, бычий сывороточный альбумин.

Чтобы избежать испарения реакционной смеси, в пробирку добавляют высококипящее масло, например, вазелиновое. Если используется амплификатор с подогревающейся крышкой, этого делать не требуется.

Добавление пирофосфатазы может увеличить выход ПЦР-реакции. Этот фермент катализирует гидролиз пирофосфата, побочного продукта присоединения нуклеотидтрифосфатов к растущей цепи ДНК, до ортофосфата. Пирофосфат может ингибировать ПЦР-реакцию[10].

[править]

Праймеры

Специфичность ПЦР основана на образовании комплементарных комплексов между матрицей и праймерами, короткими синтетическими олигонуклеотидами длиной 18—30 оснований. Каждый из праймеров комплементарен одной из цепей двуцепочечной матрицы и ограничивает начало и конец амплифицируемого участка.

После гибридизации матрицы с праймером (отжиг[11]), последний служит затравкой для ДНК-полимеразы при синтезе комплементарной цепи матрицы (см. ниже).

Важнейшая характеристика праймеров — температура плавления (Tm) комплекса праймер-матрица.

Tm — температура, при которой половина ДНК-матриц образует комплекс с олигонуклеотидным праймером. Температуру плавления можно приблизительно определить по формуле

, где L — количество нуклеотидов в праймере, K+ молярная концентрация ионов калия, GC% процентный состав гуанина и цитозина в праймере (GC-состав).

В случае неверного выбора длины и нуклеотидного состава праймера или температуры отжига возможно образование частично комплементарных комплексов с другими участками матричной ДНК, что может привести к появлению неспецифических продуктов. Верхний предел температуры плавления ограничен оптимумом температуры действия полимеразы, активность которой падает при температурах выше 80 °C.

При выборе праймеров желательно придерживаться следующих критериев:

GC-состав ~ 40—60 %;

близкие Tm праймеров (отличия не более, чем на 5 °C);

отсутствие неспецифических вторичных структур — шпилек[12] и димеров[13];

желательно, чтобы на 3’-конце был гуанин или цитозин, поскольку они образуют три водородные связи с молекулой матрицы, делая гибридизацию более стабильной.

[править]

Амплификатор

Рис. 1: Амплификатор для проведения ПЦР

ПЦР проводят в амплификаторе — приборе, обеспечивающем периодическое охлаждение и нагревание пробирок, обычно с точностью не менее 0,1 °C. Современные амплификаторы позволяют задавать сложные программы, в том числе с возможностью «горячего старта», Touchdown ПЦР (см. ниже) и последующего хранения амплифицированных молекул при 4 °C. Для ПЦР в реальном времени выпускают приборы, оборудованные флуоресцентным детектором. Существуют также приборы с автоматической крышкой и отделением для микропланшет, что позволяет встраивать их в автоматизированные системы.

[править]

Ход реакции

Фотография геля, содержащего маркерную ДНК (первый и последний слоты) и продукты ПЦР-реакции.

Обычно при проведении ПЦР выполняется 20—35 циклов, каждый из которых состоит из трёх стадий (рис. 2).

[править]

Денатурация

Двухцепочечную ДНК-матрицу нагревают до 94-96 °C (или до 98 °C, если используется особенно термостабильная полимераза) на 0,5—2 мин., чтобы цепи ДНК разошлись. Эта стадия называется денатурацией, так как разрушаются водородные связи между двумя цепями ДНК. Иногда перед первым циклом (до добавления полимеразы) проводят предварительный прогрев реакционной смеси в течение 2-3 мин. для полной денатурации матрицы и праймеров. Такой приём называется горячим стартом, он позволяет снизить количество неспецифичных продуктов реакции.

[править]

Отжиг

Когда цепи разошлись, температуру понижают, чтобы праймеры могли связаться с одноцепочечной матрицей. Эта стадия называется отжигом. Температура отжига зависит от состава праймеров и обычно выбирается равной температуре плавления праймеров. Неправильный выбор температуры отжига приводит либо к плохому связыванию праймеров с матрицей (при завышенной температуре), либо к связыванию в неверном месте и появлению неспецифических продуктов (при заниженной температуре). Время стадии отжига — 30 cек, одновременно, за это время полимераза уже успевает синтезировать несколько сотен нуклеотидов. Поэтому рекомендуется подбирать праймеры с температурой плавления выше 60 °C и проводить отжиг и элонгацию одновременно, при 60-72 °C.

[править]

Элонгация

ДНК-полимераза реплицирует матричную цепь, используя праймер в качестве затравки. Это — стадия элонгации. Полимераза начинает синтез второй цепи от 3'-конца праймера, который связался с матрицей, и движется вдоль матрицы в направлении от 3' к 5'. Температура элонгации зависит от полимеразы. Часто используемые полимеразы Taq и Pfu наиболее активны при 72 °C. Время элонгации зависит как от типа ДНК-полимеразы, так и от длины амплифицируемого фрагмента. Обычно время элонгации принимают равным одной минуте на каждую тысячу пар оснований. После окончания всех циклов часто проводят дополнительную стадию финальной элонгации, чтобы достроить все одноцепочечные фрагменты. Эта стадия длится 7—10 мин.

Рис. 2: Схематическое изображение первого цикла ПЦР. (1) Денатурация при 94—96 °C. (2) Отжиг при 68 °C (например). (3) Элонгация при 72 °C (P=полимераза). (4) Закончен первый цикл. Две получившиеся ДНК-цепи служат матрицей для следующего цикла, поэтому количество матричной ДНК в ходе каждого цикла удваивается.

Количество специфического продукта реакции (ограниченного праймерами) теоретически возрастает пропорционально 2n — 2n, где n — число циклов реакции[14]. На самом деле эффективность каждого цикла может быть меньше 100 %, поэтому в действительности P ~ (1+E)n, где P — количество продукта, Е — средняя эффективность цикла.

Число «длинных» копий ДНК тоже растет, но линейно, поэтому в продуктах реакции доминирует специфический фрагмент.

Рост требуемого продукта в геометрической прогрессии ограничен количеством реагентов, присутствием ингибиторов, образованием побочных продуктов. На последних циклах реакции рост замедляется, это называют «эффектом плато».

[править]

Разновидности ПЦР

Вложенная ПЦР (Nested PCR (англ.)) — применяется для уменьшения числа побочных продуктов реакции. Используют две пары праймеров и проводят две последовательные реакции. Вторая пара праймеров амплифицирует участок ДНК внутри продукта первой реакции.