Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Biologia_Otvety_na_voprosy_k_ekzamenu.doc
Скачиваний:
330
Добавлен:
30.03.2015
Размер:
2.1 Mб
Скачать

46. Клеточный цикл

жизненный цикл клетки, существование клетки от деления до следующего деления или смерти. У одноклеточных К. ц. совпадает с жизнью особи. В непрерывно размножающихся тканевых клетках К. ц. совпадает с митотич. циклом и состоит из четырёх периодов (три первых составляют интерфазу) со строгой последовательностью сменяющих друг друга: пресинтетического, или постмитотического (Gi, от англ. grow — расти, увеличиваться), синтетического (S, от англ. synthesis — синтез), постсинтетического, или премитотического (G2) и митоза (М). В Gi-периоде происходит активный рост и функционирование клеток, обусловленные возобновлением транскрипции и накоплением синтезированных белков, а также подготовка к синтезу ДНК. В S-периоде происходят репликация ДНК и удвоение материала хромосом. В Ch-периоде осуществляется подготовка клеток к делению, в т. ч. синтез белков веретена деления. В результате заключит, этапа К. ц.— митоза — редуплицированные хромосомы расходятся в дочерние клетки. Продолжительность К. ц. и его периодов (определяют обычно авторадиографич. методом по включению меченых предшественников в ДНК) составляет в размножающихся клетках 10—50 ч и зависит от типа клеток, их возраста, гормонального баланса организма, кол-ва ДНК в ядре, темп-ры, времени суток и др. факторов. Наиб, вариабельны по времени Gi- и G2-периоды, они могут значительно удлиняться, особенно у т. н. покоящихся клеток, в этом случае выделяют Go-период (от англ. gap — промежуток, интервал), или период покоя. С учётом периода покоя К. ц. может длиться недели и даже месяцы (напр., у клеток печени), а у нейронов К. ц. равен продолжительности жизни организма.

47. Клеточный цикл (или митотический цикл) — согласованная однонаправленная последовательность событий, в ходе которой клетка последовательно проходит его разные периоды без их пропуска или возврата к предыдущим стадиям. Клеточный цикл заканчивается делением исходной клетки на две дочерние клетки.

Длительность клеточного цикла эукариот

Длительность клеточного цикла у разных клеток варьирует. У быстро размножающихся клеток взрослых организмов таких как кроветворные или базальные клетки эпидермиса и тонкой кишки могут входить в клеточный цикл каждые 12-36 ч. Короткие клеточные циклы около 30 мин наблюдаются при быстром дроблении яиц иглокожихиземноводных. В экспериментальных условиях короткий клеточный цикл 20ч имеют многие линии клеточных культур. У большинства клеток длительность периода междумитозамисоставляет примерно 10-24 ч.

Фазы клеточного цикла эукариот

Клеточный цикл эукариотсостоит из интерфазы, во время которой идет синтезДНКибелкови осуществляется подготовка к делению клетки и собственно само деление клетки,митоз. Интерфаза состоит из нескольких периодов: G1-фазы начального роста, во время которой идет синтезмРНК,белков, других клеточных компонентов, S-фазы (синтетической фазы), во время которой идет удвоение †ДНКи G2-фазы во время которой идет подготовка кмитозу. У дифференцировавшихся клеток, которые более не делятся в жизненном цикле может отсутствовать G1 фаза. Такие клетки находятся в фазе покоя G0.

Регуляция клеточного цикла

Закономерная последовательность смены периодов клеточного цикла осуществляется при взаимодействии таких белков, какциклин-зависимые киназыициклины.Клетки, находящиеся в G0 фазе могут вступать в клеточный цикл при действии на нихгормонов роста. Разные факторы роста, такие как тромбоцитарный, эпидермальный, фактор роста нервов связываясь со своимирецепторамизапускают внутриклеточный сигнальный каскад, приводящий в итоге ктранскрипциигеновциклиновициклин-зависимых киназ.Циклин-зависимые киназыстановятся активными лишь при взаимодействии с соответствующимициклинами. Содержание различныхциклиноввклеткеменяется на протяжении всего клеточного цикла.Циклинявляется регуляторной компонентой комплекса циклин-циклин-зависимая киназа.Киназаже является каталитическим компонентом этого комплекса.Киназыне активны безциклинов. На разных стадиях клеточного цикласинтезируютсяразныециклины. Так содержаниециклинаB в ооцитахлягушкидостигает максимума к моментумитоза, когда запускается весь каскад реакцийфосфорилированиязапускаемый комплексом циклин-В/циклин-зависимая киназа. К окончанию митоза циклин быстро разрушается протеиназами.

Митотический цикл,совокупность процессов, в результате которых из одной клетки образуются две новые.

50. Эндомитоз (от Эндо... и Митоз   удвоение числа хромосом в ядрах клеток многих растительных и некоторых животных организмов. При Э., в отличие от митоза, не разрушаются ядерная оболочка и ядрышко, не образуется веретено деления клетки и не происходит реорганизация цитоплазмы, однако, как и при митозе, хромосомы проходят цикл спирализации и деспирализации. Повторные Э. приводят к возникновению гигантских полиплоидных (см. Полиплоидия) ядер, отчего в клетке увеличивается содержание дезоксирибонуклеиновой кислоты (ДНК). Э. называют также процесс многократного удвоения нуклеопротеидных нитей — хромонем, составляющих основу хромосом, без увеличения числа последних; в результате образуются гигантские (политенные) хромосомы, что также связано со значительным увеличением в ядрах количества ДНК.

Политения

наличие в ядре некоторых соматических клеток гигантских многонитчатых (политенных) хромосом, превышающих в сотни раз обычные. П. приводит к значительному увеличению плоидности ядер (до 32768 n у хирономуса). П. впервые описана француским цитологом Э. Бальбиани в 1881. Политенные хромосомы обнаруживаются в клетках личинок ряда двукрылых (хирономус, дрозофила), у простейших и в некоторых клетках растений. П. — результат многократных репликаций хромосом без последующего деления клетки или её ядра. Для гигантских хромосом характерна специфичность расположения дисков, что позволяет составлять Цитологические карты хромосоми изучать функциональную активность их отдельных участков.

51. Размножение — присущее всем живым организмамсвойство воспроизведения себе подобных, обеспечивающеенепрерывностьипреемственностьжизниHYPERLINK "http://ru.wikipedia.org/wiki/%D0%9F%D1%80%D0%BE%D0%BA%D1%80%D0%B5%D0%B0%D1%86%D0%B8%D1%8F"[1]

Для организмов, обладающих клеточнымстроением, в основе всех форм размножения лежит деление клетки[1]

Разные способы размножения подразделяются на три основных типа: бесполое, вегетативное и половое[1]

Бесполое размножение

Бесполое размножение — форма размножения, не связанная с обменом генетической информациеймежду особями —половым процессом.

Бесполое размножение является древнейшим и самым простым способом размножения и широко распространено у одноклеточных организмов(бактерии,сине-зелёные водоросли,хлореллы,амёбы,инфузории). Этот способ имеет свои преимущества: в нём отсутствует необходимость поиска партнёра, а полезные наследственные изменения сохраняются практически навсегда. Однако при таком способе размноженияизменчивость, необходимая дляестественного отбора, достигается только за счёт случайныхмутацийи потому осуществляется очень медленно. Тем не менее, следует отметить, что способность вида только к бесполому размножению не исключает способности к половому процессу, но когда эти события разнесены во времени.

Наиболее распространённый способ размножения одноклеточных организмов — деление на две части, с образованием двух отдельных особей.

Среди многоклеточных организмовспособностью к бесполому размножению обладают практически всерастенияигрибы— исключением является, например,вельвичия. Бесполое размножение этих организмов происходитвегетативнымспособом илиспорами.

Среди животныхспособность к бесполому размножению чаще встречается у низших форм, но отсутствует у более продвинутых. Единственный способ бесполого размножения у животных — вегетативный.

Широко распространено ошибочное мнение, что особи, образовавшиеся в результате бесполого размножения, всегда генетически идентичны родительскому организму (если не брать в расчёт мутации). Наиболее яркий контрпример — размножение спорами у растений, так как при спорообразовании происходитредукционное делениеклеток, в результате чего в спорах содержится лишь половина генетической информации, имеющейся в клеткахспорофита(см.Жизненный цикл растений).

Половое размножение

Половое размножение сопряжено с половым процессом(слиянием клеток), а также, в каноническом случае, с фактом существования двух взаимодополняющих половых категорий (организмовмужского полаи организмовженского пола).

При половом размножении происходит образование гамет, или половых клеток. Эти клетки обладаютгаплоидным(одинарным) набором хромосом. Животным свойствен двойной набор хромосом в обычных (соматических) клетках, поэтому гаметообразование у животных происходит в процессемейоза. У многихводорослейи всех высших растений гаметы развиваются в гаметофите, уже обладающим одинарным набором хромосом, и получаются простым митотическим делением.

По сходству-различию возникающих гамет между собой выделяют несколько типов гаметообразования:

- изогамия— гаметы одинакового размера и строения, со жгутиками

- анизогамия— гаметы различного размера, но сходного строения, со жгутиками

- оогамия— гаметы различного размера и строения. Мелкие, имеющие жгутики мужские гаметы, называютсясперматозоидами, а крупные, не имеющие жгутиков женские гаметы —яйцеклетками.

При слиянии двух гамет (в случае оогамии обязательно слияние разнотипных гамет) образуется зигота, обладающая теперьдиплоидным(двойным) набором хромосом. Из зиготы развивается дочерний организм, клетки которого содержат генетическую информацию от обеих родительских особей.

Гермафродитизм

Животное, имеющее и мужские, и женские гонады, называется гермафродитом. Гермафродитизм широко распространён среди низших животных и в меньшей степени у высших. Аналогичный признак у растений называетсяоднодомностью(в отличие от двудомности) и сопряжен с общей эволюционной продвинутостью вида в меньшей степени, чем у животных.

Партеногенез и апомиксис

Партеногенез— это особый вид полового размножения, при котором новый организм развивается из неоплодотворенной яйцеклетки, таким образом обмена генетической информацией не происходит, как и при бесполом размножении. Аналогичный процесс у растений называетсяапомиксис.

Чередование поколений

Зонтиковидные спорофитынаслоевищномгаметофитемаршанциииз отделаПечёночные мхи

У многих водорослей, у всехвысших растений, у частипростейшихикишечнополостныхв жизненном цикле происходит чередование поколений, размножающихся соответственно половым ибесполымпутём — метагенезис. У некоторых червей и насекомых наблюдаетсягетерогония — чередование разных половых поколения, например чередование раздельнополых поколений с гермафродитными, или с размножающимисяпартеногенетически.

Чередование поколений у растений

Гаметофитразвивается изспоры, имеет одинарный набор хромосом и имеет органы полового размножения — гаметангии. У разногаметных организмов мужские гаметангии, то есть производящие мужские гаметы, называютсяантеридиями, а женские — архегониями. Так как гаметофит, как и производимые им гаметы, имеет одинарный набор хромосом, то гаметы образуются простым митотическим делением.

При слиянии гамет образуется зигота, из которой развиваетсяспорофит. Спорофит имеет двойной набор хромосом и несет органы бесполого размножения — спорангии. У разноспоровых организмов измикроспорразвиваются мужские гаметофиты, несущие исключительно антеридии, а измегаспор — женские. Микроспоры развиваются в микроспорангиях, мегаспоры — в мегаспорангиях. При спорообразовании происходитмейотическаяредукция генома, и в спорах восстанавливается одинарный набор хромосом, свойственный гаметофиту.

Эволюция размножения

Эволюция размножения шла, как правило, в направлении от бесполых форм к половым, от изогамии к анизогамии, от участия всех клеток в размножении к разделению клеток на соматические и половые, от наружного оплодотворения к внутреннему с внутриутробным развитием и заботой о потомстве.

Темп размножения, численность потомства, частота смены поколений наряду с другими факторами определяют скорость приспособления вида к условиям среды. Например, высокие темпы размножения и частая смена поколений позволяют насекомым в короткий срок вырабатывать устойчивость к ядохимикатам. В эволюции позвоночных — от рыб до теплокровных — наблюдается тенденция к уменьшению численности потомства и увеличению его выживаемости

58. Половой диморфизм— анатомическиеразличия междусамцамиисамкамиодного и того жебиологического вида, не считаяполовых органов. Половой диморфизм может проявляться в различных физических признаках, например:

- Размер. У млекопитающихи многих видовптицсамцы более крупные и тяжёлые, чем самки. Уземноводныхичленистоногихсамки, как правило, крупнее самцов.

- Волосяной покров. Бородаучеловека,гриваульвовилибабуинов.

- Окраска. Цвет оперенияу птиц, особенно уутиных.

- Кожа. Характерные наросты или дополнительные образования, такие как рогауоленевых, гребешок упетухов.

- Зубы. Бивниу самцовиндийского слона, более крупные клыки у самцовморжейикабанов.

Некоторые животные, прежде всего рыбыдемонстрируют половой диморфизм только во время спаривания. Согласно одной из теорий, половой диморфизм выражен тем больше, чем различнее являются вклады обоих полов в уход за потомством. Также он является показателем уровняполигамии.

Половой диморфизм — явление общебиологическое, широко распространенное среди раздельнополыхформживотныхирастений. В некоторых случаях половой диморфизм проявляется в развитии таких признаков, которые явно вредны для их обладателей и снижают их жизнеспособность. Таковы, например, украшения и яркая окраска самцов у многих птиц, длинные хвостовые перья самцарайской птицы,птицы-лиры, мешающие полету. Громкие крики и пение, резкие запахи самцов или самок также могут привлечь внимание хищников и ставят их в опасное положение. Развитие таких признаков казалось необъяснимым с позиций естественного отбора. Для их объяснения в 1871 г. Дарвином была предложенатеория полового отбора.[1] Она вызывала споры еще во времена Дарвина. Неоднократно высказывалось мнение, что это самое слабое место дарвиновского учения.[

59. Мейоз (или редукционное деление клетки) — деление ядра эукариотическойклеткис уменьшением числахромосомв два раза. Происходит в два этапа (редукционный и эквационный этапы мейоза). Мейоз не следует смешивать сгаметогенезом— образованием специализированныхполовых клеток, илигамет, изнедифференцированныхстволовых.

С уменьшением числа хромосом в результате мейоза в жизненном циклепроисходит переход от диплоидной фазы к гаплоидной. Восстановлениеплоидности(переход от гаплоидной фазы к диплоидной) происходит в результатеполового процесса.

В связи с тем, что в профазе первого, редукционного, этапа происходит попарное слияние (конъюгация)гомологичныххромосом, правильное протекание мейоза возможно только вдиплоидныхклетках или в чётных полиплоидах (тетра-, гексаплоидных и т. п. клетках). Мейоз может происходить и в нечётных полиплоидах (три-, пентаплоидных и т. п. клетках), но в них, из-за невозможности обеспечить попарное слияние хромосом в профазе I, расхождение хромосом происходит с нарушениями, которые ставят под угрозу жизнеспособность клетки или развивающегося из неё многоклеточного гаплоидного организма.

Этот же механизм лежит в основе стерильности межвидовых гибридов. Поскольку у межвидовых гибридов в ядре клеток сочетаются хромосомы родителей, относящихся к различным видам, хромосомы обычно не могут вступить в конъюгацию. Это приводит к нарушениям в расхождении хромосом при мейозе и, в конечном счете, к нежизнеспособности половых клеток, илигамет. Определенные ограничения на конъюгацию хромосом накладывают ихромосомные мутации(масштабные делеции, дупликации, инверсии или транслокации).

Мейоз состоит из 2 последовательных делений с короткой интерфазой между ними.

- Профаза I — профаза первого деления очень сложная и состоит из 5 стадий:

- Фаза лептотены или лептонемы — конденсация ДНК с образованием хромосом в виде тонких нитей.

- Зиготена или зигонема — конъюгация (соединение) гомологичных хромосом с образованием структур, состоящих из двух соединённых хромосом, называемых тетрадами или бивалентами.

- Пахитена или пахинема — кроссинговер(перекрест), обмен участками между гомологичными хромосомами; гомологичные хромосомы остаются соединенными между собой.

- Диплотена или диплонема — происходит частичная деконденсация хромосом, при этом часть генома может работать, происходят процессы транскрипции (образование РНК), трансляции (синтез белка); гомологичные хромосомы остаются соединёнными между собой.

- Диакинез — ДНК снова максимально конденсируется, синтетические процессы прекращаются, растворяется ядерная оболочка; гомологичные хромосомы остаются соединёнными между собой.

- Метафаза I — бивалентные хромосомы выстраиваются вдоль экватора клетки.

- Анафаза I — микротрубочки сокращаются, биваленты делятся и хромосомы расходятся к полюсам. Важно отметить, что, из-за конъюгации хромосом в зиготене, к полюсам расходятся целые хромосомы, состоящие из двух хроматид каждая, а не отдельные хроматиды, как в митозе.

- Телофаза I — хромосомы деспирализуются и появляется ядерная оболочка.

Второе деление мейоза следует непосредственно за первым, без выраженной интерфазы: S-период отсутствует, поскольку перед вторым делением не происходит репликации ДНК.

- Профаза II — происходит конденсация хромосом, клеточный центр делится и продукты его деления расходятся к полюсам ядра, разрушается ядерная оболочка, образуется веретено деления.

- Метафаза II — унивалентные хромосомы (состоящие из двух хроматид каждая) располагаются на «экваторе» (на равном расстоянии от «полюсов» ядра) в одной плоскости, образуя так называемую метафазную пластинку.

- Анафаза II — униваленты делятся и хроматиды расходятся к полюсам.

- Телофаза II — хромосомы деспирализуются и появляется ядерная оболочка.

В результате из одной диплоидной клеткиобразуется четырегаплоидных клетки. В тех случаях, когда мейоз сопряжён сгаметогенезом(например, у многоклеточных животных), при развитиияйцеклетокпервое и второе деления мейоза резко неравномерны. В результате формируется одна гаплоидная яйцеклетка и два так называемыхредукционных тельца(абортивные дериваты первого и второго делений).

Отличия

Шаг 1:

И в процессе митоза, и в процессе мейоза происходит образование митотического веретена, расхождение хромосом, деление клетки.

Шаг 2:

Процесс митоза включает в себя одно деление, и в результате образуются 2 дочерние клетки, а процесс мейоза – два деления, в результате образуются 4 дочерние клетки.

Шаг 3:

Количество ДНК в результате мейоза уменьшается в 4 раза, в результате митоза – в 2 раза.

Шаг 4:

Хромосомный набор клетки в результате митоза остаётся диплоидным, в результате мейоза из диплоидного становится гаплоидным.

Шаг 5:

Наконец, только в процессе мейоза происходит кроссинговер.

61. Воспроизведение — это способность организмов образовывать себе подобных. Воспроизведение является одним из важнейших свойств жизни и возможно благодаря общей способности организмов производить потомство. Однако не всегда непосредственные потомки подобны родительским особям. Например, из спор папоротника вырастает многочисленное потомство, представленное заростками, не похожими на материнское спороносное растение. На заростке, в свою очередь, возникает непохожее на него растение — спорофит. Такое явление получило название чередование поколений.

62. Половой процесс, или оплодотворение, или амфимиксис— процесс слияния гаплоидныхполовых клеток, илигамет, приводящий к образованиюдиплоиднойклеткизиготы. Не следует смешивать это понятие споловым актом(встречей половых партнёров у многоклеточныхживотных).

Половой процесс закономерно встречается в жизненном циклевсех организмов, у которых отмеченмейоз. Мейоз приводит к уменьшению числа хромосом в два раза (переход отдиплоидногосостояния к гаплоидному), половой процесс — к восстановлению числа хромосом (переход от гаплоидного состояния к диплоидному).

Различают несколько форм полового процесса:

- изогамия — гаметы не отличаются друг от друга по размерам, подвижны, жгутиковые или амебоидные;

- анизогамия (Гетерогамия) — гаметы отличаются друг от друга по размерам, но оба типа гамет (макрогаметы и микрогаметы) подвижны и имеют жгутики;

- оогамия — одна из гамет (яйцеклетка) значительно крупнее другой, неподвижна, делениямейоза, приводящие к её образованию, резко асимметричны (вместо четырёх клеток формируется одна яйцеклетка и два абортивных «полярных тельца»); другая (спермий, илисперматозоид) подвижна, обычно жгутиковая или амебоидная.

Биологическое значение амфимиксиса непосредственно связан с биологической сущностью определенных сторон процесса оплодотворения. Дарвин, открывший «великий закон природы», говорил о прогрессивном значении появления полового процесса в истории органического мира, рассматривая при этом перекрёстное опыление как источник обогащения наследственности. Благодаря бипариентальному наследованию (материнское — от яйцеклеткии отцовское — от спермия) в результате амфимиксиса получаются более жизнеспособные организмы, обладающие более широким спектромизменчивостипо сравнению сапомиктичнымирастениями.

63. Гаметогенез или предзародышевое развитие — процесс созревания половых клеток, или гамет. Поскольку в ходе гаметогенеза специализация яйцеклеток и спермиев происходит в разных направлениях, обычно выделяютовогенезисперматогенезсоответственно. Гаметогенез закономерно присутствует в жизненном цикле ряда простейших, водорослей, грибов, споровых и голосемянных растений, а также многоклеточных животных. В некоторых группах гаметы вторично редуцированы (сумчатые и базидиевые грибы, цветковые растения). Наиболее подробно процессы гаметогенеза изучены у многоклеточных животных.

Гаметогенез

(от гаметыи греч. genesis — происхождение), процесс развития и формирования половых клеток —гамет. Г. мужских гамет (сперматозоидов, спермиев) называютсперматогенезом, женских гамет (яйцеклеток) —оогенезом. У животных и растений Г. протекает различно, в зависимости от местамейозав жизненном цикле этих организмов.

У многоклеточных животных Г. происходит в специальных органах — половых железах, или гонадах (яичниках, семенниках, гермафродитных половых железах), и складывается из трёх основных этапов: 1) размножение первичных половых клеток — гаметогониев (сперматогониев и оогониев) путём ряда последовательных митозов, 2) рост и созревание этих клеток, называют теперь гаметоцитами (сперматоцитами и ооцитами), которые, как и гаметогонии, обладают полным (большей частью диплоидным) наборомхромосом. В это время совершается основное событие Г. у животных — деление гаметоцитов путём мейоза, приводящее к редукции (уменьшению вдвое) числа хромосом в этих клетках и превращению их в гаплоидные клетки (см.Гаплоид) сперматиды и оотиды; 3) формирование сперматозоидов (либо спермиев) и яйцеклеток; при этом яйцеклетки одеваются рядом зародышевых оболочек, а сперматозоиды приобретают жгутики, обеспечивающие их подвижность. У самок многих видов животных мейоз и формирование яйца завершаются после проникновения сперматозоида в цитоплазму ооцита, но до слияния ядер сперматозоида и яйцеклетки.

У растений Г. отделен от мейоза и начинается в гаплоидных клетках — в спорах (у высших растений — микроспоры и мегаспоры). Из спор развивается половое поколение растения — гаплоидный гаметофит, в половых органах которого — гаметангиях (мужских —антеридиях, женских —архегониях) путём митозов происходит Г. Исключение составляют голосеменные и покрытосеменные растения, у которых сперматогенез идёт непосредственно в прорастающей микроспоре — пыльцевой клетке. У всех низших и высших споровых растений Г. в антеридиях — это многократное деление клеток, в результате которого образуется большое число мелких подвижных сперматозоидов. Г. в архегониях — формирование одной, двух или нескольких яйцеклеток. У голосеменных и покрытосеменных растений мужской Г. состоит из деления (путём митоза) ядра пыльцевой клетки на генеративное и вегетативное и дальнейшего деления (также путём митоза) генеративного ядра на два спермия. Это деление происходит в прорастающей пыльцевой трубке. Женский Г. у покрытосеменных растений — обособление путём митоза одной яйцеклетки внутри 8-ядерного зародышевого мешка. Основное различие Г. у животных и растений: у животных он совмещает в себе превращение клеток из диплоидных в гаплоидные и формирование гаплоидных гамет; у растений Г. сводится к формированию гамет из гаплоидных клеток.

64. Гаметы (от греч.γᾰμετή — жена, γᾰμέτης — муж) — репродуктивные клетки, имеющие гаплоидный(одинарный) наборхромосоми участвующие в гаметном, в частности, половом размножении. При слиянии двух гамет вполовом процессеобразуетсязигота, развивающаяся в особь (или группу особей) с наследственными признаками обоих родительских организмов, продуцировавших гаметы.

У некоторых видов возможно и развитие в организм одиночной гаметы (неоплодотворённой яйцеклетки) — партеногенез.

Морфология гамет и типы гаметогамии

Морфология гамет различных видов достаточно разнообразна, при этом продуцируемые гаметы могут отличаться как по хромосомному набору (при гетерогаметностивида), величине и подвижности (способности к самостоятельному передвижению), при этом гаметный диморфизм у различных видов варьирует в широких пределах — от отсутствия диморфизма в виде изогамии до своего крайнего проявления в форме оогамии.

Изогамия

Если сливающиеся гаметы морфологически не отличаются друг от друга величиной, строением и хромосомным набором, то их называют изогаметами, или бесполыми гаметами. Такие гаметы подвижны, могут нести жгутики или быть амёбовидными. Изогамия типична для многихводорослей.

Анизогамия (гетерогамия)

Гаметы, способные к слиянию, различаются по размерам, подвижные микрогаметы несут жгутики, макрогаметы могут быть как подвижны (многие водоросли), так и неподвижны (лишённые жгутиков макрогаметы многих протистов).

Оогамия

Способные к слиянию гаметы одного биологического вида резко различаются по размерам и подвижности на два типа: малые подвижные мужские гаметы — сперматозоиды— и крупные неподвижные женские гаметы —яйцеклетки. Различие размера гамет обусловлено тем, что яйцеклетки содержат запас питательных веществ, достаточный для обеспечения нескольких первых делений зиготы при её развитии в зародыш.

Мужские гаметы — сперматозоиды— животных и многих растений подвижны и обычно несут один или несколько жгутиков, исключением являются лишённные жгутиков мужские гаметысеменных растений— спермии, которые доставляются к яйцеклетке при прорастаниипыльцевой трубки, а также безжгутиковые сперматозоиды (спермии) нематод и членистоногих.

Хотя сперматозоиды несут митохондрии, при оогамии от мужской гаметы к зиготе переходит только ядернаяДНК,митохондриальная ДНК(а в случае растений ипластиднаяДНК) обычно наследуется зиготой только от яйцеклетки.

65. Эпигенез , учение о зародышевом развитии организмов как процессе последовательных новообразований в противовес признанию существования в половых клетках и зачатках зародыша изначального многообразия структур Борьба между сторонниками Э. и преформационных представлений протекала на всем протяжении истории биологии. Одни ученые (Аристотель, У. Гарвей, И. Блуменбах, Х. Дриш и др.) отстаивали Э. с идеалистических, виталистических позиций, другие (Р. Декарт, П. Мопертюи, Ж. Бюффон, К. Ф. Вольф и др.) — с механико-материалистических. Смена господствующих в ту или иную эпоху концепций развития определялась уровнем знаний об оплодотворении и эмбриогенезе организмов. Победа Э. в середине 18 в. (благодаря в основным трудам К. Ф. Вольфа) способствовала развитию эмбриологии. Успехи цитологии в 70—80-х гг. 19 в. привели к появлению многочисленных теорий наследственности, опровергавших Э. Борьба между концепциями Э. и преформизма была особенно острой в механике развития. С возникновением генетики учение чистого Э. оказалось окончательно опровергнутым. На смену примитивным представлениям о развитии как процессе полного новообразования, зависящего лишь от внешних или нематериальных факторов, пришло современное учение о генетической информации, определяющей закономерности онтогенеза организмов. Однако конкретное развитие организмов подвержено, в пределах нормы реакции,большим или меньшим изменениям под влиянием внутренних и внешних факторов (см. Феногенетика). В свете этих представлений попытки обосновать Э. с позиций кибернетики (В. Эльзассер и др.) несостоятельны. Столь же неприемлемо допущение дуализма между преформированными молекулярно-биологическими генетическими структурами и якобы исключительно эпигенетическими процессами развития. Современная биология рассматривает закономерности осуществления наследственной информации в развитии организмов как единый взаимообусловленный процесс.

Преформизм — учение о наличии в половых клеткахматериальных структур, предопределяющих развитиезародышаи признаки развивающегося из негоорганизма.

Преформизм возник на базе господствовавшего в XVII—XVIII вв. представления о преформации, согласно которому зародыш уже сформирован в половых клетках, и его дальнейшее развитие заключается только в увеличении в размерах

Учёные того времени разделились на анималькулистов и овистов. Первые считали, что зародыш содержится всперматозоидах, вторые — в яйцеклетках.

Преформизм        учение о наличии в половых клетках организмов материальных структур, предопределяющих развитие зародыша и признаки образующегося из него организма. Выяснение во 2-й половине 19 в. сущности процессов оплодотворения и клеточного деления — Митоза, а также возникновение механики развития (см. Онтогенез) сделали очевидной несостоятельность учения о развитии как о процессе полного новообразования частей организма из бесструктурных половых клеток (см.Эпигенез), под влиянием лишь внешних условий (см. Эктогенез) или каких-то нематериальных целенаправленных факторов (см. Витализм). Учение об индивидуальности заключённых в ядрах клеток хромосом (См. Хромосомы) и их роли в процессах оплодотворения и наследования породило в конце 19 в. много гипотетических теорий наследственности (См.Наследственность) и развития, носившие в той или иной степени преформистский характер. С возникновением в начале 20 в. генетики (См.Генетика) эти гипотезы получили серьёзное научное обоснование. Было показано, что половые клетки — Гаметы содержат материальные структуры — Гены, передающиеся из поколения в поколение и определяющие признаки развивающихся организмов. В 50-х гг. 20 в. с выяснением химической природы генов и механизмов хранения и передачи генетической информации (См. Генетическая информация) (в соответствии с которой и осуществляется процесс развития каждого вида и особи) получила научное завершение многовековая и противоречивая история преформационных представлений в биологии. Поэтому не следует отождествлять современный П. с первыми, наивными представлениями о существовании в половых клетках готовых, полностью сформированных зародышей (см. Преформация).

         Подлинная материалистическая теория органического развития не ограничивается допущением лишь преформированных структур, но должна учитывать и эпигенетические факторы развития, осуществляя их диалектический синтез.

66. Онтогене́з— индивидуальное развитие организмаотоплодотворения(приполовом размножении) или от момента отделения от материнской особи (прибесполом размножении) досмерти.

У многоклеточных животныхв составе онтогенеза принято различать фазыэмбрионального(под покровом яйцевых оболочек) и постэмбрионального (за пределами яйца) развития, а у живородящих животных пренатальный (до рождения) и постнатальный (после рождения) онтогенез.

У семенных растенийк эмбриональному развитию относят процессы развития зародыша, происходящие всемени.

Термин «онтогенез» впервые был введен Э. Геккелемв1866 году. В ходе онтогенеза происходит процесс реализации генетической информации, полученной от родителей.

Онтогенез делится на два периода:

- эмбриональный — от образования зиготы до рождения или выхода из яйцевых оболочек;

- постэмбриональный — от выхода из яйцевых оболочек или рождения до смерти организма.

Эмбриональный период

В эмбриональном периоде выделяют три основных этапа: дробление,гаструляциюипервичный органогенез.Эмбриональный, или зародышевый, период онтогенеза начинается с момента оплодотворения и продолжается до выхода зародыша из яйцевых оболочек. У большинства позвоночных он включает стадии (фазы) дробления, гаструляции, гисто- и органогенеза.

Дробление

Дробление — ряд последовательных митотических делений оплодотворенного или инициированного к развитию яйца. Дробление представляет собой первый период эмбрионального развития, который присутствует в онтогенезе всех многоклеточных животных и приводит к образованию зародыша, называемого бластулой(зародыш однослойный). При этом масса зародыша и его объем не меняются, то есть они остаются такими же, как у зиготы, а яйцо разделяется на все более мелкие клетки — бластомеры. После каждого деления дробления клетки зародыша становятся все более мелкими, то-есть меняются ядерно-плазменные отношения: ядро остается таким же, а объем цитоплазмы уменьшается. Процесс протекает до тех пор, пока эти показатели не достигнут значений, характерных для соматических клеток. Тип дробления зависит от количества желтка и его расположения в яйце. Если желтка мало и он равномерно распределен в цитоплазме (изолецитальные яйца: иглокожие, плоские черви, млекопитающие), то дробление протекает по типу полного равномерного: бластомеры одинаковы по размерам, дробится все яйцо. Если желток распределен неравномерно (телолецитальные яйца: амфибии), то дробление протекает по типу полного неравномерного: бластомеры — разной величины, те, которые содержат желток — крупнее, яйцо дробится целиком. При неполном дроблении желтка в яйцах настолько много, что борозды дробления не могут разделить его целиком. Дробление яйца, у которого дробится только сконцентрированная на анимальном полюсе «шапочка» цитоплазмы, где находится ядро зиготы, называется неполным дискоидальным (телолецитальные яйца: пресмыкающиеся, птицы). При неполном поверхностном дроблении в глубине желтка происходят первые синхронные ядерные деления, не сопровождающиеся образованием межклеточных границ. Ядра, окруженные небольшим количеством цитоплазмы, равномерно распределяются в желтке. Когда их становится достаточно много, они мигрируют в цитоплазму, где затем после образования межклеточных границ возникает бластодерма (центролецитальные яйца: насекомые).

Гаструляция

Гаструляция(впячивание) — гаструла формируется в результате инвагинации клеток. В ходе гаструляции клетки зародыша практически не делятся и не растут. Происходит активное передвижение клеточных масс (морфогенетические движения). В результате гаструляции формируются зародышевые листки (пласты клеток). Гаструляция приводит к образованию зародыша, называемого гаструлой.

Первичный органогенез

Первичный органогенез — процесс образования комплекса осевых органов. В разных группах животных этот процесс характеризуется своими особенностями. Например, у хордовыхна этом этапе происходит закладканервной трубки,хордыикишечной трубки.

В ходе дальнейшего развития формирование зародыша осуществляется за счет процессов роста, дифференцировки и морфогенеза. Ростобеспечивает накопление клеточной массы зародыша. В ходе процесса дифференцировки возникают различно специализированные клетки, формирующие различные ткани и органы. Процесс морфогенеза обеспечивает приобретение зародышем специфической формы.

Постэмбриональное развитие

Постэмбриональное развитиебывает прямым и непрямым.

- Прямое развитие — развитие, при котором появившийся организм идентичен по строению взрослому организму, но имеет меньшие размеры и не обладает половой зрелостью. Дальнейшее развитие связано с увеличением размеров и приобретением половой зрелости. Например: развитие рептилий, птиц, млекопитающих.

- Непрямое развитие(личиночное развитие, развитие с метаморфозом) — появившийся организм отличается по строению от взрослого организма, обычно устроен проще, может иметь специфические органы, такой зародыш называется личинкой. Личинкапитается, растет и со временем личиночные органы заменяются органами, свойственными взрослому организму (имаго). Например: развитие лягушки, некоторых насекомых, различных червей.

Постэмбриональное развитие сопровождается ростом.

67. Эндокринные железы (железы внутренней секреции) — железыипараганглии, синтезирующиегормоны, которые выделяются в кровеносные (венозные) или лимфатические капилляры. Эндокринные железы не имеют выводных протоков.

К железам внутренней секреции относятся:

- Щитовидная железа

- Паращитовидные железы

- Вилочковая железа(тимус)

- Надпочечники

- Параганглии

- Половые железы — яичкиияичники

- Инкреторная частьподжелудочной железы.

- Гипоталамо-гипофизарная система(гипоталамус,гипофиз).

- Эпифиз

Анатомия человека :: Эндокринная система

Функция и работа органов эндокринной системы - гипоталамус, щитовидня железа, поджелудочная железа, гипофиз, надпочечники, половые железы

Нормальное функционирование органов нашего тела основано на том, что они должны потреблять одни вещества для выработки других, необходимых организму. Для решения этой задачи существует система внутреннего контроля и регулирования - гормональная, или эндокринная система.

Гормоны выполняют роль химических агентов, которые выделяются в кровь некоторыми железами. Железы, вырабатывающие гормоны, называют железами внутренней секреции, эндокринными железами: у них нет выводных путей, и они выделяют свой секрет в межклеточное пространство, где его подхватывает кровь и переносит в другие части организма. Самые главные из них - гипоталамус, гипофиз, щитовидная железа, околощитовидные железы, поджелудочная железа, надпочечники и половые железы, хотя имеются и другие, такие, как эпифиз и тимус, действие которых до настоящего времени полностью не изучено.

Есть также железы другого вида (потовые, слюнные, слезные и др.), являющиеся экзокринными, то есть внешней секреции, так как они не выделяют свои продукты в кровоток.

Железы внутренней секреции Гипоталамус - это орган головного мозга, который, наподобие диспетчерской, дает распоряжения по выработке и распределению гормонов в нужном количестве и в нужное время.

Щитовидная железа, околощитовидные железы - щитовидная железа, расположенная в передней части шеи, секретирует три гормона. К ней примыкают четыре небольшие околощитовидные железы, участвующие в обмене кальция.

Поджелудочная железа - этот орган является одновременно экзокринным и эндокринным. Как эндокринный, он вырабатывает два гормона - инсулин и глюкагон, регулирующие обмен углеводов.

Гипофиз - железа, расположенная в основании черепа, выделяющая большое количество трофических гормонов - тех, которые стимулируют секрецию других эндокринных желез.

Надпочечники - представляют собой две небольшие железы, расположенные по одной над каждой почкой и состоящие из двух самостоятельных частей - коры и мозгового вещества.

Половые железы - половые железы (яичники у женщин и яички у мужчин) вырабатывают половые клетки и другие основные гормоны, участвующие в репродуктивной функции.

69. Генетический потенциал человека ограничен во времени, причем довольно жестко. Если пропустить срок ранней социализации, он угаснет, не успев реализоваться. Ярким примером этого утверждения являются многочисленные случаи, когда младенцы силой обстоятельств попадали в джунгли и проводили среди зверей несколько лет. После возвращения их в человеческое сообщество они не могли уже в полной мере наверстать упущенное: овладеть речью, приобрести достаточно сложные навыки человеческой деятельности, у них плохо развивались психические функции человека. Это и есть свидетельство  того, что характерные черты человеческого поведения и деятельности приобретаются только через социальное наследование, только через передачу социальной программы в процессе воспитания и обучения.

Для понимания роли наследственности и среды в онтогенезе человека важное значение имеют такие понятия, как «генотип» и «фенотип». Генотип — это наследственная основа организма, совокупность генов, локализованных в его хромосомах, это  генетическая конституция, которую организм получает от своих родителей.

Фенотип — совокупность всех свойств и признаков организма, сформировавшихся в процессе его индивидуального развития. Фенотип определяется взаимодействием организма с условиями среды, в которых протекает его развитие. В отличие от генотипа фенотип изменяется в течение всей жизни организма и  зависит от генотипа и среды. Одинаковые генотипы (у однояйцевых близнецов), оказавшись в различных средах, могут давать различные фенотипы. С учетом всех факторов воздействия фенотип человека можно представить состоящим из нескольких элементов. К ним относятся: биологические задатки, кодируемые в генах; среда (социальная и природная); деятельность индивида; ум (сознание, мышление).

Исходя из сложной структуры фенотипа человека, можно сказать, что предметом евгеники,  является только один — первый из указанных элементов. Представители евгеники абсолютизируют именно его. В то же время социальные элементы фенотипа человека остаются вне их поля зрения. В этом состоит ограниченность позиции последователей данной теории.

Взаимодействие наследственности и среды в развитии человека играет важную роль на  протяжении всей его жизни. Но особую важность оно приобретает в периоды формирования организма: эмбрионального, грудного, детского, подросткового и юношеского. Именно в это время наблюдается интенсивный процесс развития организма и формирования личности.

Наследственность определяет то, каким может стать организм, но развивается человек под одновременным влиянием обоих факторов — и наследственности, и среды. Сегодня становится общепризнанным, что адаптация человека осуществляется под влиянием двух программ наследственности: биологической и социальной. Все признаки и свойства любого индивида являются результатом взаимодействия его генотипа и среды. Поэтому каждый человек есть и часть природы, и продукт общественного развития.

С такой позицией сегодня согласно большинство ученых. Разногласие возникает тогда, когда речь заходит о роли наследственности и среды в исследовании умственных способностей человека. Одни считают, что умственные способности наследуются генетически, другие говорят о том, что развитие умственных способностей определяется влиянием социальной среды.

Точное определение понятия «умственные способности» также представляет собой довольно трудную задачу. Интеллектуальные способности весьма разнообразны и своеобразны. Человек может быть гениальным шахматистом и плохим артистом (поэтом, математиком и т.д.), и наоборот. Но даже сама процедура применения тестов на определение IQ имеет свои недостатки, которые отмечают многие ученые. Например, при определении IQ многое зависит от учета социальной среды, уровня и характера воспитания и образования испытуемых, их организованности, внимательности, собранности и даже темперамента.  Результаты тестирования так же зависят не только от испытуемых, но и от тестирующих — какие вопросы задаются, для какой цели, из какой области или деятельности и т.д. Получается, что если детям, которые воспитывались на улице, задать вопрос о том, как надо вести себя в обществе, а у детей аристократов спросить, например, о правилах кулачного боя, то,  вероятно, IQ и тех, и других будет невелик и во многом одинаков.

Таким образом, исчерпывающие сведения об умственных способностях людей с помощью IQ получить достаточно трудно. «Тем не менее, — отмечает А.П. Пехов, — большое количество независимых исследований, выполненных почти в 10 странах, свидетельствует о том, что индивидуальные различия в коэффициентах умственных способностей обусловлены как наследственностью, так и средой». При этом автор ссылается на исследования американских ученых, которые определяли IQ у однояйцевых близнецов, воспитываемых вместе и раздельно, т.е. в условиях одинаковой и разной среды. Выяснилось, что у раздельно воспитываемых близнецов различия между коэффициентами были большими, чем у близнецов, живущих вместе. Т.к. генотип у однояйцевых близнецов идентичен, полученные результаты указывают на существенное влияние среды на умственное развитие личности. То, что умственные способности определяются не только наследственностью, но и средой, подтверждается и другими исследованиями.

Говоря о биологическом наследовании человека, следует иметь в виду, что не только положительные задатки, но и умственная неполноценность часто обусловлены генотипом. Так, если один из однояйцевых близнецов, имеющих, как уже отмечалось, практически одинаковый генотип, заболевает шизофренией, то в 69% заболевает ею и второй. В случае слабоумия у одного в 97% этот недуг проявляется и у другого, тогда как у разнояйцевых близнецов — только в 37%. Высокий процент умственно отсталых людей рождается тогда, когда один или оба родителя неполноценны в этом отношении. При исследовании родословной детей с умственной отсталостью оказывалось, что даже в том случае, когда родители были совершенно нормальными, у них обнаруживались родственники с подобными заболеваниями.

70.Эмбриогенез человека - это часть его индивидуального развития, онтогенеза.

Он тесно связан с прогенезом (образованием половых клеток и ранним

постэмбриональным развитием. Эмбриология человека изучает процесс развития человека, начиная с оплодотворения и до рождения. Эмбриогенез человека,

продолжающийся в среднем 280 суток (10 лунных месяцев ), подразделяется на три периода: начальный (первая неделя развития), зародышевый (вторая-восьмая недели), и плодный (с девятой недели до рождения ребенка). В курсе эмбриологии человека на кафедре гистологии более подробно изучаются ранние стадии развития.

В процессе эмбриогенеза можно выделить следующие основные стадии:

1. Оплодотворение ~ слияние женской и мужской половых клеток. В результатеобразуется новый одноклеточный организм-зигота.

2. Дробление. Серия быстро следующих друг за другом делений зиготы. Эта стадия заканчивается образованием многоклеточного зародыша, имеющего у человека форму пузырька-бластоцисты, соответствующей бластуле других позвоночных.

3. Гаструляция. В результате деления, дифференцировки, взаимодействия и перемещения клеток зародыш становится многослойным. Появляются зародышевые листки эктодерма, энтодерма и мезодерма, несущие в себе накладки различных тканей и органов.

4. Гистогенез, органогенез, системогенез. В ходе дифференцировки зародышевых листков образуются зачатки тканей, формирующие органы и системы организма человека.

Тератогенные факторы

Тератогенез - возникновение пороков развития под влиянием факторов внешней среды (тератогенных факторов) или в результате наследственных болезней.

Известно, что распространенность самопроизвольных абортов составляет 15-20% общего числа беременностей, 3-5% новорожденных имеют пороки развития, еще у 15% детей пороки развития выявляют в возрасте 5-10 лет.

Тератогенные факторывключают лекарственные средства, наркотики и многие другие вещества.

Выделяют следующие особенности влияния тератогенных факторов.

- Действие тератогенных факторов имеет дозозависимый характер. У разных биологических видов дозозависимость тератогенного действия может различаться.

- Для каждого тератогенного фактора существует определенная пороговая доза тератогенного действия. Обычно она на 1-3 порядка ниже летальной.

- Различия тератогенного действия у различных биологических видов, а также у разных представителей одного и того же вида связаны с особенностями всасывания, метаболизма, способности вещества распространяться в организме и проникать через плаценту.

-Чувствительность к разным тератогенным факторам в течение внутриутробного развития может меняться. Выделяют следующие периоды внутриутробного развития человека.

- Начальный период внутриутробного развития длится с момента оплодотворения до имплантации бластоцисты. Бластоциста представляет собой скопление клеток - бластомеров. Отличительная черта начального периода - большие компенсаторно-приспособительные возможности развивающегося зародыша. При повреждении большого числа клеток зародыш погибает, а при повреждении отдельных бластомеров - дальнейший цикл развития не нарушается (принцип "все или ничего").

- Второй период внутриутробного развития - эмбриональный (18-60-е сутки после оплодотворения). В это время, когда зародыш наиболее чувствителен к тератогенным факторам, формируются грубые пороки развития. После 36-х суток внутриутробного развития грубые пороки развития (за исключением пороков твердого неба, мочевых путей и половых органов) формируются редко.

- Третий период - плодный. Пороки развития для этого периода не характерны. Под влиянием факторов внешней среды происходит торможение роста и гибель клеток плода, что в дальнейшем проявляется недоразвитием или функциональной незрелостью органов.

- В случаях, когда тератогенное действие оказывают возбудители инфекций, пороговую дозу и дозозависимый характер действия тератогенного фактора оценить не удается.

Основне тератогенные факторы

Инфекции

- Герпес (вирусы простого герпеса типа 1 и 2)

- Инфекционная эритема (парвовирусная инфекция)

- Краснуха

- Сифилис

- Токсоплазмоз

- Венесуэльский лошадиный энцефалит

- Инфекции, вызванные вирусом varicella-zoster

Ионизирующее излучение

- Радиоактивные осадки

- Лечение радиоактивным йодом

- Лучевая терапия

Метаболические нарушения и вредные привычки у беременной

- Алкоголизм

- Кокаинизм

- Вдыхание толуола

- Курение

- Эндемический зоб

- Дефицит фолиевой кислоты

- Длительная гипертермия

- Фенилкетонурия

71. ГОМЕОСТАЗгенетический — способность популяции поддерживать динамическое равновесие генетического состава, что обеспечивает ее жизнеспособность.

Гомеостатические системы обладают следующими свойствами:

- Нестабильность системы: тестирует, каким образом ей лучше приспособиться.

- Стремление к равновесию: вся внутренняя, структурная и функциональная организация систем способствует сохранению баланса.

- Непредсказуемость: результирующий эффект от определённого действия зачастую может отличаться от того, который ожидался.

Механизмы гомеостаза: обратная связь

Когда происходит изменение в переменных, наблюдаются два основных типа обратной связи, или фидбэка, на которые реагирует система:

- Отрицательная обратная связь, выражающаяся в реакции, при которой система отвечает так, чтобы изменить направление изменения на противоположное. Так как обратная связь служит сохранению постоянства системы, это позволяет соблюдать гомеостаз.

- Например, когда концентрация углекислого газав организме человека увеличивается, лёгким приходит сигнал к увеличению их активности и выдыханию большего количество углекислого газа.

- Терморегуляция— другой пример отрицательной обратной связи. Когда температура тела повышается (или понижается)терморецепторывкожеигипоталамусерегистрируют изменение, вызывая сигнал из мозга. Данный сигнал, в свою очередь, вызывает ответ — понижение температуры (или повышение).

-Положительная обратная связь, которая выражается в усилении изменения переменной. Она оказывает дестабилизирующий эффект, поэтому не приводит к гомеостазу. Положительная обратная связь реже встречается в естественных системах, но также имеет своё применение.

- Например, в нервах пороговый электрический потенциалвызывает генерацию намного большегопотенциала действия.Свёртываниекровии события прирожденииможно привести в качестве других примеров положительной обратной связи.

Устойчивым системам необходимы комбинации из обоих типов обратной связи. Тогда как отрицательная обратная связь позволяет вернуться к гомеостатическому состоянию, положительная обратная связь используется для перехода к совершенно новому (и, вполне может быть, менее желанному) состоянию гомеостаза, — такая ситуация называется «метастабильность». Такие катастрофические изменения могут происходить, например, с увеличением питательных веществв реках с прозрачной водой, что приводит к гомеостатическому состоянию высокойэвтрофикации(зарастание руславодорослями) и замутнению.

72. Регенерация — свойство всех живыхорганизмов со временем восстанавливать поврежденныеткани, а иногда и целые потерянныеорганы.

Регенерацией называется восстановление организмомутраченных частей на той или иной стадии жизненного цикла. Регенерация, происходящая в случае повреждения или утраты какого-нибудь органа или части организма, называется репаративной. Регенерацию в процессе нормальной жизнедеятельности организма, обычно не связанную с повреждениями или утратой, называют физиологической.

Физиологическая регенерация

В каждом организме на протяжении всей его жизни постоянно идут процессы восстановления и обновления. У человека, например, постоянно обновляется наружный слойкожи.Птицыпериодически сбрасываютперьяи отращивают новые, амлекопитающиесменяютшерстныйпокров. У листопадныхдеревьевлистья ежегодно опадают и заменяются свежими. Такие процессы носят название физиологической регенерации.

Репаративная регенерация

Репаративной называют регенерацию, происходящую после повреждения или утраты какой-либо части тела. Выделяют типичную и атипичную репаративную регенерацию.

При типичной регенерации утраченная часть замещается путем развития точно такой же части. Причиной утраты может быть внешнее воздействие (например, ампутация), или же животное намеренно отрывает часть своего тела (аутотомия), как ящерица, обламывающая часть своего хвоста, спасаясь от врага.

При атипичной регенерации утраченная часть замещается структурой, отличающейся от первоначальной количественно или качественно. У регенерировавшей конечности головастикачисло пальцев может оказаться меньше исходного, а укреветкивместо ампутированного глаза может вырасти антенна.

Репарация — особая функция клеток, заключающаяся в способности исправлять химические повреждения и разрывы в молекулахДНК, повреждённой при нормальном биосинтезе ДНК в клетке или в результате воздействия физическими или химическими агентами. Осуществляется специальными ферментными системами клетки. Ряд наследственных болезней (напр.,пигментная ксеродерма) связан с нарушениями систем репарации.

Источники повреждения ДНК

- УФ излучение

- Радиация

- Химические вещества

- Ошибки репликации ДНК

- Апуринизация — отщепление азотистых оснований от сахарофосфатного остова

- Дезаминирование — отщепление аминогруппы от азотистого основания

Устройство системы репарации

Каждая из систем репарации включает следующие компоненты:

- фермент, "узнающий" химически изменённые участки в цепиДНКи осуществляющий разрыв цепи вблизи от повреждения

- фермент, удаляющий повреждённый участок

- фермент(ДНК-полимераза), синтезирующий соответствующий участок цепиДНКвзамен удалённого

- фермент(ДНК-лигаза), замыкающий последнюю связь в полимерной цепи и тем самым восстанавливающий её непрерывность

Типы репарации

У бактерийимеются по крайней мере 2 ферментные системы, ведущие репарацию — прямая и эксцизионная.

Прямая репарация

Прямая репарация наиболее простой путь устранения повреждений в ДНК, в котором обычно задействованы специфическиеферменты, способные быстро (как правило, в одну стадию) устранять соответствующее повреждение, восстанавливая исходную структурунуклеотидов. Так действует, например, O6-метилгуанин-ДНК-метилтрансфераза, которая снимает метильную группу с азотистого основания на один из собственных остатковцистеина.

Эксцизионная репарация

Эксцизионная репарация (англ. excision — вырезание) включает удаление повреждённых азотистых оснований из ДНК и последующее восстановление нормальной структуры молекулы.

Соседние файлы в предмете Биология