Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
103
Добавлен:
30.03.2015
Размер:
79.87 Кб
Скачать

2.1.6. Относительная влажность

Относительной влажностью ВВ называется отношение парциального давления паров в воздухе к давлению насыщающих водяных паров. Обычно относительную влажность выражают в процентах. Тогда формула для расчета относительной влажности будет

φ = 100 рвп / рнп,

Для абсолютно сухого воздуха рвп = рнп, и φ = 100 %. При полном насыщении воздуха водяными парами рвп = рнп, и φ = 100 %. Относительной влажность, таким образом, является мерой степени насыщения воздуха водяными парами

2.1.8. Температура точки росы

Если ВВ, имеющий относительную влажность 0 < φ < 100 %, охлаждать, то при понижении температуры будет уменьшаться давление насыщенных водяных паров, которое зависит только от температуры. При этом влагосодержание воздуха будет оставаться неизменным, а относительная влажность будет увеличиваться. В некоторый момент при определенной температуре значение рнп достигнет значения рвп . В этот момент относительная влажность достигнет значения 100% – ВВ приобретет состояние полного насыщения. При дальнейшем охлаждении рнп станет меньше рвп , и часть влаги начнет конденсироваться на холодных поверхностях, контактирующих с воздухом, или образуется туман. Таким образом, дальнейшее охлаждение воздуха приводит к его перенасыщению влагой, что ведет к выпадению конденсата – росы. Поэтому та предельная температура, до которой можно охлаждать воздух без выпадения конденсата, и начиная с которой процесс дальнейшего охлаждения сопровождается выпадением конденсата, называется температурой точки росы. Температура точки росы при постоянном атмосферном давлении зависит только от начального влагосодержания воздуха.

2.1.7. Энтальпия (теплосодержание)

Энтальпией ВВ называется количество теплоты, которое требуется на то, чтобы перевести 1 кг абсолютно сухой воздух (d = 0), находящийся при 0 °С, в некое другое состояние с температурой t и влагосодержанием d.

Из данного определения следует, что при t = 0 и d = 0 энтальпия воздуха также равна 0.

Энтальпия воздуха измеряется в кДж/кг.с.в (килоджоули на килограмм сухого воздуха) и складывается из трех слагаемых, которые отражают затраты теплоты на следующие цели:

  • нагрев сухой части воздуха до температуры t;

  • испарение влаги;

  • нагрев водяных паров до температуры t.

I = cсв t + r d /1000 + cвп t d /1000

Вклад указанных трех составляющих неодинаков. Оценим его для расчета энтальпии воздуха, имеющего 50% относительную влажность при 20 °С.

I = 1,005 20 + 2500 7 /1000 + 1,8 20 7 /1000 =

= 20,1 + 17,5 + 0,036 = 37,5 + 0,036

Из приведенных вычислений видно, что затраты теплоты на нагрев сухой части воздуха и на испарение влаги соизмеримы и имеют один порядок, а затраты тепла на нагрев водяных паров составляют лишь около 0,1% от суммы двух других составляющих. Таким образом, энтальпия воздуха в основном складывается из первых двух слагаемых, а третьим слагаемым в большинстве случаев можно пренебречь.

2.1.9. Температура по мокрому термометру

Рассмотрим ситуацию, когда мелкая капля воды витает в воздухе, имеющем некоторую температуру и относительную влажность. Схема, поясняющая сущность происходящих при этом процессов, приведена на рисунке 2.1.

Для простоты рассуждений будем считать, что в начальный момент времени капля воды имеет такую же температуру, как и окружающий ее воздух, то есть tw = tв . Парциальное давление водяных паров над поверхностью капли равно давлению насыщенных паров, а давление водяных паров в окружающем воздухе меньше, так как относительная влажность воздуха меньше 100%. Под действием градиента давлений то начинается первый процесс – процесс массопереноса (испарение) влаги с поверхности капли в воздух. На испарение воды затрачивается некоторое количество теплоты, которое может быть взято только от самой капли, поэтому температура капли начинает понижаться. Затраченное на испарение тепло передается воздуху вместе с испарившейся влагой. Это тепло называется скрытым, так как оно не изменяет температуры воздуха.

Рисунок 3.1. – К пояснению понятия температуры мокрого термометра.

Как только температура капли станет меньше температуры окружающего воздуха, начнется второй процесс – теплоотдача явного тепла от воздуха к поверхности капли за счет градиента температур. При этом от воздуха будет отбираться явное тепло. Чем больше разность температур воздуха и капли, тем интенсивнее идет данный процесс.

По мере понижения температуры капли постепенно снижается и величина давления насыщенных паров над поверхностью капли, и интенсивность испарения уменьшается. Интенсивность же передачи явного тепла от воздуха к капле, наоборот, растет по мере снижения температуры капли, так как увеличивается действующая разность температур. В итоге при некоторой температуре капли наступит равенство потоков явного и скрытого тепла. В этот момент справедливо равенство

α Fw (tвtw) = β Fw нп – рвп) r

Так как подводимое к капле явное тепло равняется отводимому от нее скрытому теплу, температура капли дальше изменяться не будет. Пока будет продолжаться процесс испарения (до полного испарения капли), температура капли будет оставаться постоянной. Эта температура называется температурой мокрого термометра. Энтальпия воздуха в этом процессе так же не меняется, хотя температура его понижается (явное тепло отбирается). Но раз отбираемое явное тепло передаваемому ему скрытому теплу, суммарное теплосодержание воздуха не изменяется. Происходит просто преобразование явного тепла в скрытое.

Температура мокрого термометра зависит от влажности воздуха. Чем меньше относительная влажность, тем ниже давление паров в воздухе и тем интенсивнее идет испарение, поэтому температура будет ниже.

Температура мокрого термометра названа так потому, что данный процесс используется для измерения влажности воздуха психрометрическим методом, при котором используются два термометра – "сухой" и "мокрый". Сухой термометр показывает просто температуру воздуха. Шарик мокрого термометра обернут тонкой тряпочкой, которую смачивают водой перед началом измерения. Процессы, проходящие на шарике мокрого термометра, аналогичны вышеописанным процессам, поэтому столбик мокрого термометра понижается и через некоторое время останавливается на некотором значении – это и есть температура мокрого термометра. Зная показания двух термометров, можно определить влажность воздуха. Более детально данный метод измерения разбирается на лабораторных занятиях.

2.2. I-d диаграмма влажного воздуха

Учитывая, что влажный воздух является основным объектом вентиляционного процесса, в области вентиляции приходится часто определять те или другие параметры воздуха. Чтобы избежать многочисленных вычислений, их определяют обычно по специальной диаграмме, которая носит название I-d диаграммы. Она позволяет быстро определить все параметры воздуха по двум известным. Использование диаграммы позволяет избежать вычислений по формулам и наглядно отобразить вентиляционный процесс. Пример I-d диаграммы приведен на следующей странице. Аналогом I-d диаграммы на западе является диаграмма Молье или психрометрическая диаграмма.

Оформление диаграммы в принципе может быть несколько различным. Типовая общая схема I-d диаграммы показана ниже на рисунке 3.1. Диаграмма представляет из себя рабочее поле в косоугольной системе координат I-d, на котором нанесено несколько координатных сеток и по периметру диаграммы – вспомогательные шкалы. Шкала влагосодержаний обычно располагается по нижней кромке диаграммы, при этом линии постоянных влагосодержаний представляют вертикальные прямые. Линии постоянных энтальпий представляют параллельные прямые, обычно идущие под углом 135° к вертикальным линиям влагосодержаний (в принципе, углы между линиями энтальпии и влагосодержания может быть и другим). Косоугольная система координат выбрана для того, чтобы увеличить рабочее поле диаграммы. В такой системе координат линии постоянных температур представляют из себя прямые линии, идущие под небольшим наклоном к горизонтали и слегка расходящиеся веером.

Рабочее поле диаграммы ограничено кривыми линиями равных относительных влажностей 0% и 100%, между которыми нанесены линии других значений равных относительных влажностей с шагом 10%.

Шкала температур обычно располагается по левой кромке рабочего поля диаграммы. Значения энтальпий воздуха нанесены обычно под кривой φ = 100. Значения парциальных давлений иногда наносят по верхней кромке рабочего поля, иногда по нижней кромке под шкалой влагосодержаний, иногда по правой кромке. В последнем случае на диаграмме добавочно строят вспомогательную кривую парциальных давлений.

Соседние файлы в папке вент_лекции