
- •Статика
- •Тема №1. Введение. Основные понятия статики.
- •Введение
- •Элементы векторной алгебры
- •1. Понятие вектора.
- •2. Правые и левые системы координат.
- •3. Длина, проекции и направляющие косинусы вектора.
- •4. Скалярное произведение двух векторов
- •5. Векторное произведение двух векторов
- •Основные понятия статики
- •Основные понятия: Сила
- •1. Величина, являющаяся количественной мерой механического взаимодействия материальных тел, называется в механике силой.
- •Система сил
- •Аксиомы статики.
- •Аксиома 1.
- •Аксиома 2.
- •Следствие из 1-й и 2-й аксиом.
- •Аксиома 3 (аксиома параллелограмма сил).
- •Аксиома 4.
- •Аксиома 5 (принцип отвердевания).
- •Связи и их реакции.
- •Некоторые основные виды связей
- •1. Гладкая плоскость (поверхность) или опора.
- •2. Нить.
- •3. Цилиндрический шарнир (подшипник).
- •4. Шаровой шарнир и подпятник.
- •5. Стержень.
- •6. Подвижная шарнирная опора
- •7. Неподвижная шарнирная опора
- •8. Неподвижная защемляющая опора или жесткая заделка (рис.19).
- •Вопросы для самопроверки по теме №1
- •Тема №2. Равновесие системы сил. Пара сил
- •Проекция силы на ось и на плоскость.
- •Геометрический способ сложения сил.
- •Равновесие системы сходящихся сил.
- •Геометрическое условие равновесия
- •Аналитические условия равновесия
- •Пример 1.
- •Пример 2.
- •Пример 3.
- •Момент силы относительно центра (или точки).
- •Теорема Вариньона о моменте равнодействующей.
- •Пара сил. Момент пары.
- •Свойства пар
- •Сложение пар
- •Теорема о параллельном переносе силы.
- •Приведение плоской системы сил к данному центру.
- •Условия равновесия произвольной плоской системы сил. Случай параллельных сил.
- •Теорема о трех моментах.
- •Равновесие плоской системы параллельных сил.
- •Статически определимые и статически неопределимые задачи.
- •Советы при решение задач.
- •Вопросы для самопроверки по теме №2
- •Тема №3. Расчет ферм. Трение скольжения и качения.
- •Равновесие систем тел.
- •Расчет ферм. Понятие о ферме. Аналитический расчет плоских ферм.
- •Метод вырезания узлов.
- •Метод сечений (метод Риттера).
- •Графический расчет плоских ферм.
- •Трение.
- •Трение покоя, скольжения.
- •Сила трения скольжения
- •Сухое трение
- •Реакции шероховатых связей. Угол трения.
- •Равновесие при наличии трения.
- •Пример 1.
- •Пример 2.
- •Пример 3.
- •Трение качения и верчения.
- •Сопротивление среды.
- •Сопротивление воздуха.
- •Сопротивление воды.
- •Момент силы относительно центра как вектор.
- •Момент пары сил как вектор.
- •Момент силы относительно оси.
- •Пример 4.
- •Зависимость между моментами силы относительно центра и относительно оси.
- •Приведение пространственной системы сил к данному центру.
- •Условия равновесия произвольной пространственной системы сил.
- •Условия равновесия произвольной пространственной системы сил.
- •Принципы решения задач на равновесие тела под действием пространственной системы сил.
- •Пример 5.
- •Пример 6.
- •Вопросы для самопроверки по теме №3
- •Тема №4. Центр тяжести.
- •Сложение параллельных сил. Центр параллельных сил.
- •Параллельные силы, распределенные по отрезку прямой.
- •Координаты центров тяжести неоднородных тел.
- •Координаты центров тяжести однородных тел.
- •Способы определения координат центра тяжести.
- •Центры тяжести некоторых однородных тел.
- •Вопросы для самопроверки по теме №4
- •Вопросы к экзамену и зачету по статике
- •Список литературы
Трение качения и верчения.
Возьмем деревянный цилиндр и положим его на стол так, чтобы он касался стола по образующей. В центры оснований цилиндра вставим концы проволочной вилки и прикрепим к ней снабженный очень чувствительный динамометр. Если тянуть за динамометр, то цилиндр покатится по столу. По показаниям динамометра увидим, что нужна весьма небольшая сила тяги, чтобы сдвинуть с места цилиндр и катить его равномерно дальше, гораздо меньшая, чем при скольжении того же цилиндра, если бы он не вращался и скользил бы по столу. При той же силе давления на стол сила трения качения много меньше силы трения скольжения. Например, при качении стальных колёс по стальным рельсам трение качения примерно в 100 раз меньше, чем трение скольжения. Поэтому в машинах стремятся заменить трение скольжения трением качения, применяя так называемые шариковые или роликовые подшипники.
Происхождение трения качения можно наглядно представить себе так. Когда шар или цилиндр катится по поверхности другого тела, он немного вдавливается в поверхность этого тела, а сам немного сжимается. Таким образом, катящееся тело всё время как бы вкатывается на горку.
Рис.33
Вместе с тем происходит отрыв участков одной поверхности от другой, а силы сцепления, действующие между этими поверхностями, препятствуют этому. Оба эти явления и вызывают силы трения качения. Чем твёрже поверхности, тем меньше вдавливание и тем меньше трение качения.
Трением качения называется сопротивление, возникающее при качении одного тела по поверхности другого.
Рис.34
Рассмотрим круглый
цилиндрический каток радиуса R
и веса
,
лежащий на горизонтальной шероховатой
плоскости. Приложим к оси катка силу
(рис. 34, а), меньшую
.
Тогда в точкеА
возникает сила трения
,
численно равнаяQ,
которая будет препятствовать скольжению
цилиндра по плоскости. Если считать
нормальную реакцию
тоже приложенной в точкеА,
то она уравновесит силу
,
а силы
и
образуют пару, вызывающую качение
цилиндра. При такой схеме качение
должно начаться, как видим, под действием
любой, сколь угодно малой силы
.
Истинная же картина,
как показывает опыт, выглядит иначе.
Объясняется это тем, что фактически,
вследствие деформаций тел, касание
их происходит вдоль некоторой площадки
АВ
(рис. 34, б). При действии силы
интенсивность давлений у краяА
убывает, а у края В
возрастает.
В результате реакция
оказывается смещенной в сторону действия
силы
.
С увеличением
это смещение растет до некоторой
предельной величиныk.
Таким образом, в предельном положении
на каток будут действовать пара (
пр,
)
с моментом
и уравновешивающая ее пара (
,
)
с моментом
.
Из равенства моментов находим
или
Пока
,
каток находится в покое; при
начинается качение.
Входящая в формулу линейная величина k называется коэффициентом трения качения. Измеряют величину k обычно в сантиметрах. Значение коэффициента k зависит от материала тел и определяется опытным путем.
Коэффициент трения качения при качении в первом приближении можно считать не зависящим от угловой скорости качения катка и его скорости скольжения по плоскости.
Для вагонного колеса
по рельсу
мм.
Рассмотрим движение
ведомого колеса.
,
а
.
Качение колеса
начнется, когда выполнится условие
или
Скольжение колеса
начнется, когда выполнится условие
.
Обычно отношение
и качение начинается раньше скольжения.
Если
,
то колесо будет скользить по поверхности,
без качения.
Отношение
для большинства материалов значительно
меньше статического коэффициента трения
.
Этим объясняется
то, что в
технике, когда это возможно, стремятся
заменить скольжение качением (колеса,
катки, шариковые подшипники и т. п.).