
- •Статика
- •Тема №1. Введение. Основные понятия статики.
- •Введение
- •Элементы векторной алгебры
- •1. Понятие вектора.
- •2. Правые и левые системы координат.
- •3. Длина, проекции и направляющие косинусы вектора.
- •4. Скалярное произведение двух векторов
- •5. Векторное произведение двух векторов
- •Основные понятия статики
- •Основные понятия: Сила
- •1. Величина, являющаяся количественной мерой механического взаимодействия материальных тел, называется в механике силой.
- •Система сил
- •Аксиомы статики.
- •Аксиома 1.
- •Аксиома 2.
- •Следствие из 1-й и 2-й аксиом.
- •Аксиома 3 (аксиома параллелограмма сил).
- •Аксиома 4.
- •Аксиома 5 (принцип отвердевания).
- •Связи и их реакции.
- •Некоторые основные виды связей
- •1. Гладкая плоскость (поверхность) или опора.
- •2. Нить.
- •3. Цилиндрический шарнир (подшипник).
- •4. Шаровой шарнир и подпятник.
- •5. Стержень.
- •6. Подвижная шарнирная опора
- •7. Неподвижная шарнирная опора
- •8. Неподвижная защемляющая опора или жесткая заделка (рис.19).
- •Вопросы для самопроверки по теме №1
- •Тема №2. Равновесие системы сил. Пара сил
- •Проекция силы на ось и на плоскость.
- •Геометрический способ сложения сил.
- •Равновесие системы сходящихся сил.
- •Геометрическое условие равновесия
- •Аналитические условия равновесия
- •Пример 1.
- •Пример 2.
- •Пример 3.
- •Момент силы относительно центра (или точки).
- •Теорема Вариньона о моменте равнодействующей.
- •Пара сил. Момент пары.
- •Свойства пар
- •Сложение пар
- •Теорема о параллельном переносе силы.
- •Приведение плоской системы сил к данному центру.
- •Условия равновесия произвольной плоской системы сил. Случай параллельных сил.
- •Теорема о трех моментах.
- •Равновесие плоской системы параллельных сил.
- •Статически определимые и статически неопределимые задачи.
- •Советы при решение задач.
- •Вопросы для самопроверки по теме №2
- •Тема №3. Расчет ферм. Трение скольжения и качения.
- •Равновесие систем тел.
- •Расчет ферм. Понятие о ферме. Аналитический расчет плоских ферм.
- •Метод вырезания узлов.
- •Метод сечений (метод Риттера).
- •Графический расчет плоских ферм.
- •Трение.
- •Трение покоя, скольжения.
- •Сила трения скольжения
- •Сухое трение
- •Реакции шероховатых связей. Угол трения.
- •Равновесие при наличии трения.
- •Пример 1.
- •Пример 2.
- •Пример 3.
- •Трение качения и верчения.
- •Сопротивление среды.
- •Сопротивление воздуха.
- •Сопротивление воды.
- •Момент силы относительно центра как вектор.
- •Момент пары сил как вектор.
- •Момент силы относительно оси.
- •Пример 4.
- •Зависимость между моментами силы относительно центра и относительно оси.
- •Приведение пространственной системы сил к данному центру.
- •Условия равновесия произвольной пространственной системы сил.
- •Условия равновесия произвольной пространственной системы сил.
- •Принципы решения задач на равновесие тела под действием пространственной системы сил.
- •Пример 5.
- •Пример 6.
- •Вопросы для самопроверки по теме №3
- •Тема №4. Центр тяжести.
- •Сложение параллельных сил. Центр параллельных сил.
- •Параллельные силы, распределенные по отрезку прямой.
- •Координаты центров тяжести неоднородных тел.
- •Координаты центров тяжести однородных тел.
- •Способы определения координат центра тяжести.
- •Центры тяжести некоторых однородных тел.
- •Вопросы для самопроверки по теме №4
- •Вопросы к экзамену и зачету по статике
- •Список литературы
Тема №3. Расчет ферм. Трение скольжения и качения.
В данной лекции рассматриваются следующие вопросы
Равновесие системы тел.
Расчет ферм.
Понятие о ферме.
Аналитический расчет плоских ферм.
Графический расчет плоских ферм.
Трение.
Законы трения скольжения.
Реакции шероховатых связей.
Угол трения.
Равновесие при наличии трения.
Трение качения и верчения.
Момент силы относительно центра как вектор.
Момент пары сил как вектор.
Момент силы относительно оси.
Зависимость между моментами силы относительно центра и относительно оси.
Приведение пространственной системы сил к данному центру.
Условия равновесия произвольной пространственной системы сил.
Задачи на равновесие тела под действием пространственной системы сил.
Изучение данных вопросов необходимо в дальнейшем для изучения динамики движении тел с учетом трения скольжения и трения качения, динамики движения центра масс механической системы, кинетических моментов, для решения задач в дисциплине «Сопротивление материалов».
Равновесие систем тел.
Статический расчет инженерных сооружений во многих случаях сводится к рассмотрению условий равновесия конструкции из системы тел, соединенных какими - нибудь связями. Связи, соединяющие части данной конструкции, будем называть внутренними, в отличие от внешних связей, скрепляющих конструкцию с телами, в нее не входящими (например, с опорами).
Рис.22
Если после отбрасывания внешних связей (опор) конструкция остается жесткой, то для нее задачи статики решаются как для абсолютно твердого тела.
Однако могут встречаться такие инженерные конструкции, которые после отбрасывания внешних связей не остаются жесткими. Примером такой конструкции является трехшарнирная арка (рис. 22). Если отбросить опоры А и В, то арка не будет жесткой: ее части могут поворачиваться вокруг шарнира С.
На основании принципа отвердевания система сил, действующих на такую конструкцию, должна при равновесии удовлетворять условиям равновесия твердого тела. Но эти условия, как указывалось, будучи необходимыми, не будут являться достаточными, поэтому из них нельзя будет определить всех неизвестных. Для решения задачи необходимо будет дополнительно рассмотреть равновесие какой-нибудь одной или нескольких частей конструкции.
Например, составляя
условия равновесия для сил, действующих
на трех шарнирную арку (см. рис. 22), мы
получим три уравнения с четырьмя
неизвестными
,
,
,
.
Рассмотрев дополнительно условия
равновесия левой (или правой) ее половины,
мы получим еще три уравнения, содержащие
два новых неизвестных
,
,
на рис. 22 не
показанных. Решая полученную систему
шести уравнений, найдем все шесть
неизвестных.
Другой способ решения подобных задач состоит в том, что конструкцию сразу расчленяют на отдельные тела и составляют условия равновесия каждого из тел, рассматривая его как свободное. При этом реакции внутренних связей будут попарно равны по модулю и противоположны по направлению. Для конструкции из n тел, на каждое из которых действует произвольная плоская система сил, получится таким путем 3n уравнений, позволяющих найти 3n неизвестных (при других системах сил число уравнений соответственно изменится). Если для данной конструкции число всех реакций связей будет больше числа уравнений, в которые эти реакции входят, то конструкция будет статически неопределимой.