Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Электрические машины.doc
Скачиваний:
41
Добавлен:
30.03.2015
Размер:
6.64 Mб
Скачать
  1. Принцип действия трансформатора.Назначение трансформаторов.

Трансформаторпредставляет собой статический электромагнитный аппарат с двумя (или больше) обмотками, предназначенный чаще всего для преобразования переменного тока одного напряжения в переменный ток другого напряжения. Преобразование энергии в трансформаторе осуществляется переменным магнитным полем. Трансформаторы чаще всего применяются при передаче электрической энергии на большие расстояния, распределении её между приёмниками, а также в различных выпрямительных, усилительных и других устройствах.Стержнем называется часть магнитопровода, на которой размещены обмотки трансформатора. В действительности каждая обмотка размещается на обоих стержнях так, что одни половины двух обмоток находятся на левом, а другие половины - на правом стержне магнитопровода. При таком расположении обмоток достигается лучшая магнитная связь между ними, благодаря чему снижаются потоки рассеяния, которые не участвуют в процессе трансформирования энергии.

Принцип действия трансформатора.Действие трансформатора основано на явлении взаимной индукции. Если первичную обмотку трансформатора включить в сеть источника переменного тока, то по ней будет проходить переменный ток I0, который создаст в сердечнике трансформатора переменный магнитный поток. Этот магнитный поток, пронизывая витки вторичной обмотки, будет индуктировать в ней ЭДС Е2. Если вторичную обмотку замкнуть на какой-либо приёмник энергии, то под действием индуктируемой ЭДС Е2 по этой обмотке и через приёмник энергии начнёт протекать ток I2.

Одновременно в первичной обмоткетакже появится нагрузочный ток I1` , который в сумме с током I0 составит ток первичной обмотки I1. Таким образом, электрическая энергия, трансформируясь, передаётся из первичной сети во вторичную при напряжении, на которое рассчитан приёмник энергии, включённый по вторичную сеть.В целях улучшения магнитной связи между первичной и вторичной обмотками их помещают на стальной магнитопровод. Обмотки изолируют как друг от друга, так и от магнитопровода. Обмотка более высокого напряжения называется обмоткой высшего напряжения (ВН), а обмотка более низкого напряжения - обмоткой низшего напряжения (НН). Обмотка, включённая в сеть источникаэлектрической энергии, называется первичной; обмотка от которой энергия подаётся к приёменику, - вторичной.В трёхобмоточных трансформаторах на магнитопровод помещают три изолированные друг от друга обмотки. Такой трансформатор, питаемый со стороны одной из обмоток, дает возможность получать два различных напряжения и снабжать электрической энергией две различные группы приёмников. Кроме обмоток высшего и низшего напряжения трёхобмоточный трансформатор имеет обмотку среднего напряжения (СН).При цилиндрических обмотках поперечному сечению стержня магнитопровода желательно придать округлую форму, чтобы в площади, охватываемой обмотками, не оставалось немагнитных промежутков. Чем меньше немагнитные промежутки, тем меньше длина витков обмоток, а следовательно и масса меди при заданной площади сечения стального стержня.В трансформаторахмалой мощности площадь сечения провода мала и выполнение обмоток упрощается. Магнитопроводы таких трансформаторов имеют прямоугольное сечение.

  1. Конструкции обмоток, магнитопроводов и систем охлаждения. Магнитопроводы однофазных трансформаторов

.Магнитопроводы собирают из отдельных пластин, изолированных друг от друга для уменьшения потерь на вихревые токи лаком, окалиной или химическим способом. Иногда магнитопроводы малых трансформаторов наматывают из стальной ленты на специальных приспособлениях в виде плоских спиралей.Потери в стали магнитопровода складываются из потерь на гистерезис (перемагничивание стали) и потерь на вихревые токи. Потери на вихревые токи зависят от материала магнитопровода, толщины стальных пластин и изоляции между ними. Кроме того , потери на вихревые токи оценивают совместно, называют потерями в стали и обозначают PстПовышение магнитной проницаемости даёт возможность использовать большие значения магнитной индукции. Это приводит к уменьшению поперечного сечения магнитопровода трансформатора и числа витков его обмоток, т.е. уменьшает расход стали и меди. .

В зависимости от формы магнитопровода и расположения обмоток на нём однофазные трансформаторы подразделяют стержневые и броневые.

Стержневой магнитопровод имеет дав стержня, охватываемых обмотками. На каждом стержне магнитопровода помещена катушка, состоящая из половин первичной и вторичной обмоток.Такое расположение обмоток на магнитопроводе обеспечивает лучшую магнитную связь между ними, чем при размещении первичной и вторичной обмоток на разных стержнях, как это условно изображается на схемах. Более хорошая магнитная связь уменьшает изменения вторичного напряжения трансформатора, которые возникают при изменениях его нагрузки.Половины каждой обмотки помещённые на правом и левом стержнях магнитопровода, соединяют между собой последовательно, чтобы их намагничивающие силы совпали по направлению.

Втрансформаторе броневого типа первичная и вторичная обмотки помещены на среднем стержне магнитопровода. Таким образом, в этом трансформаторе обмотки частично охватываются (бронируются ) ярмом. Магнитный поток, пронизывающий стержень магнитопровода, разветвляется на две части. Поэтому сечение ярма вдвое меньше сечения стержня.Трансформаторы больших и средних мощностей выполняют стержневыми, так как в броневых трансформаторах обмотки ВН сложно изолировать от магнитопровода. Трансформаторы малой мощности часто выполняют броневыми.Броневой магнитопроводобладает рядом конструктивных достоинств - один комплект обмоток вместо двух при стержневом магнитопроводе, более высокий коэффициент наполнения окна магнитопровода обмоточным проводом, частичная защита обмотки ярмом от механических повреждений.Стержневой трансформаторимеет следующие основные достоинства: большая поверхность охлаждения обмотки; малая индуктивность рассеяния вследствие половинного числа витков на каждом стержне и меньшей толщины намотки; меньший расход обмоточного провода, чем у броневого трансформатора, так как уменьшение толщины на мотки вызывает уменьшение средней длины витка обмотки; значительно меньшая, чем в броневом трансформаторе, чувствительность к внешним магнитным полям, так как э. д. с. помех, наводимых в обеих катушках трансформатора, имеют противоположные знаки и взаимно уничтожаются.

Магнитопроводы трансформаторов выполняют стыковыми и шихтованными. На рис схематично показана схема сборки стыкового магнитопровода, на рис- шихтованного из П-образных стальных пластин. Пластины могут иметь и иную форму (Г-образные, Ш-образные, прямоугольные и т. д.).При сборке встык сердечник состоит из двух частей, собранных из стальных пластин; после размещения обмоток на магнитопроводе обе части его скрепляют. При шихтовке пластины чередуют так, чтобы у лежащих друг на друге пластин разрезы были с разных сторон сердечника. При этом один слой стальных пластин (например, нечетный) укладывают, как показано сплошной линией, а другой слой (четный) - как показано прерывистой линией.При тщательной сборке шихтованного магнитопровод зазоры между пластинами стержня и ярма можно сделать очень малыми, так что магнитное сопротивление магнитопровод будет относительно небольшим.После сборки магнитопровод стягивают болтами, шпильками или ленточными бандажами. Стяжные планки, болты и т. д. изолируют от тела магнитопровода электрокартоном или бумагой, чтобы предотвратить возможность образования короткозамкнутых витков вокруг магнитопровода или его части. Образование короткозамкнутых витков приводит к аварии.

  1. Схемы и группы соединений обмоток трансформаторов.

Понятие о схемах и группах соединений имеет важное значение при эксплуатации трансформаторов.

В однофазныхтрансформаторах начала обмоток обозначаютсяА,а,а концыX, х.Большие буквы относятся к обмоткам высшего напряжения, а малые — к обмоткам низшего напряжения.В трехфазных трансформаторахначала обмоток высшего напряжения обозначаютсяА, В, С,а концыX,У,Z.Начала обмоток низшего напряжеиия—а, b, с,а концы —х, у, z.Нулевые точки —О ио.Если есть третья обмотка среднего напряжения, используются обозначенияАm, Bm , Cm ; Xm ,Ym ,Zm .Если на одном стержне намотать правовивтовую и левовинтовую обмотки, а начала и концы принимать у них одинаковыми, то ЭДС кату­шек будут сдвинуты на 180°, Естественно, при изменении маркировки — перемене обозначений начала и концов обмоток— ЭДС в катушках не изменяются. Чтобы соединить катушки с правой и левой намотками параллельно, надо соединить начала и концы обмоток, т.е.а1их22их1,. При условии равенства витков, когда ,токи в катушках будут равны нулю. Если в этом случае соединить начала и концы обмоток, то в обмотках будет протекать ток, определяемый ЭДС, равной ,и суммой сопротивлений обмоток.При включения трансформаторов на параллельную работу удобно соединять начала обмоток одного трансформатора с началом обмоток другого и стандартизовать обозначения. Чтобы не было ошибок при эксплуатации трансформаторов, введено понятие сдвига между напряжениями первичной и вторичной обмоток.

Рис. 1 – Группы соединения однофазных трансформатора

Принято сдвиг фаз между линейными напряжениями обмоток характеризовать положением стрелок на циферблате часов. Электродвижущую силу обмотки высшего напряжения совмещают с минутной стрелкой и устанавливают на цифре 12. Часовая (малая) стрелка совмещается с напряжением обмотки низшего напряжения.

Для однофазных трансформаторов возможны две группы соединений: нулевая и шестая (рис.40). Для нулевой (или двенадцатой) сдвиг между напряжениями равен 0° — минутная в часовая стрелки совпадают (рис. 1,а).Для шестой группы сдвиг между напряжениями 180°, стрелки показывают 6 ч (рис. 1,б).Эти группы обозначаются соответственноI/I—ОиI/I—б. Стандартизована и применяется группа 0.В трехфазных и многофазных трансформаторах возможны большие комбинации обмоток, и поэтому рассматриваются схемы соединения обмоток. Наибольшее применение имеют схемы соединения в звезду и треугольник (рис.2).Схема соединения в зигзагприменяется редко (рис.3), а другое комбинации соединений обмоток практически не применяются.

Схема соединения в звезду обозначается буквойY, соединения в треугольник — Δ, в зигзаг —Z.В соединениях в звезду и зигзаг можно вывести нулевую точку. В этом случае получаются соединения в звезду с нулевой точкой и в зигзаг с нулевой точкой.Для многофазных трансформаторов остаются эти же принципы соединения обмоток. Например, для пятифазной системы схемами соединения будут пятифазная звезда и пятиугольник (рис.4, а, б), дляm-фазной системы—m-фазная звезда и m-угольник.В трехфазной системе схемы соединенийYи Δ образуют 12 групп соединений со сдвигом фаз линейных напряжений на 30°, что соответствует 12 цифрам циферблата часов.

Стандартизованы две группы соединенийY/Y—0 иY/ Δ —11 (рис. 5) со сдвигом фаз 0° и 330°. В эксплуатации вполне достаточно иметь две группы соединений и не выпускать 10 остальных групп.

Изучая трансформаторы, необходимо иметь представление о том, как получаются группы б и 5.

Группы 0, 6 и 11,5 — основные. Из них круговой перестановкой вы­водов получаются еще по три группы: из группы 0 образуются группы 4 и 8; из 6— 10 и 2;из 11— 3 и 7;из5— 9 и 1.

Опытным путем группа соединения определяется следующим образом. Соединяют одноименные выводы обмоток высшего и низшего напряжений, напримерАиа. Присоединяют трансформатор к сети с симметричным напряжением и измеряют напряжения между выводами трансформатора. По измеренным напряжениям строят векторную диаграмму, которая должна совпасть с одной из типовых. После этого определяют группу соединения трансформатора.

Схема соединения в зигзаг дает возможность получить любую схему соединения, т.е. любой угол между напряжениями. Как видно из рис.3, угол между векторами высшего и низшего напряжений зависит от соотношения чисел витков обмоток, соединенных последовательно в расположенных на разных стержнях. Это преимущество схемы в зигзаг используется в специальных схемах, когда требуется получить промежуточные электрические углы между напряжениями, меньше 30°.

Вопрос4.

  1. Схемы замещения двухобмоточного трансформатора, физическое толкование ее параметров.

Для уравнений приведенного трансформатора в установившемся режиме (28)—(30) может быть предложена электрическая схема замещения (рис. 5). Действительно, если представить, что к выводам вторичной обмотки подключена нагрузка, то Решая совместно (28)—(30), получаем

(35)

Нетрудно убедиться, что, согласно схеме замещения трансформатора, напряжение на первичной обмотке определяется по (35).

.

В схеме замещения имеется электрическая связь между первичной и вторичной обмотками, что позволяет исключить из рассмотрения магнитные связи.

В (21) и (28)—(30) потери в магнитопроводе не учитываются. Их можно приближенно учесть, увеличив активное сопротивление первичной обмотки r1или введя вzоактивное сопротивлениеrо, эквивалентное потерям в стали:

z0=r0+jx0, (2.36)

где магнитные потери (потери в стали)

(37)

Потери в стали пропорциональны . Так какФm~ Е, потери в стали пропорцио­нальныФmилиB2. Если не учитывать падение напряжения на z1, потери в стали можно, с большой точностью, считать пропорциональными квадрату напряжения.

Т-образную схему замещения (рис.7) можно видоизменить, предста­вив ветвь намагничивания состоящей из двух сопротивлений (рис.8). Из схемы замещения рис.8

(38;39)

На схеме рис. 8 параметры намагничивающего контура r12иjx12 представлены в виде сосредоточенных параметров. В действительности они распределенные. Используя выражения (38) и (39), можно прийти к схеме, в которой активное и реактивное сопротивления намагничиваю­щего контура соединены последовательно (рис. 9). В этой схеме замещения ,,.В схему рис.9 вхо­дят активные сопротивления первичной и вторичной обмоток, индуктивные сопротивления рассеяния первичной и вторичной обмоток, а также сопротивление, эквивалентное потерям в стали,r12 и со противление взаимной индукцииx12.

Уравнения установившегося режи­ма, векторная диаграмма и схема заме­щения позволяют проанализировать ра­боту трансформатора в установившемся режиме.

Когда zn=, имеет место холо­стой ход трансформатора (). При этом трансформатор потребляет из сети ток холостого хода, который идет на создание поля в трансформаторе и покрытие потерь в стали. Ток холостого хода имеет в основном реактивную составляющую.

При нагрузке во вторичной обмотке протекает ток , который растет при увеличении нагрузки. В первичной обмотке при увеличении нагрузки также растет ток , при этом токи и , имеют встречное направление и их сумма, практически, не изменяется [см. (30)]. Это хорошо видно и на векторной диаграмме (см. рис.2), которая является геометрической интерпретацией уравнений трансформатора. Ток холостого хода при нагрузке не растет и даже уменьшается за счет падения напряжения на первичной обмотке. При изменении нагрузки во вторичной обмотке изменяется потребляемая из сети мощность в первичной обмотке, а потокФmв трансформаторе почти не изменяется, так как из векторной диаграммы и схемы замещения видно, чтои() почти не изменяются, так как падение напряжения на первичной обмотке мало.

При емкостной нагрузке реактивная мощность в трансформатор поступает с выводов вторичной обмотки. При реактивная мощность из сети не поступает, а реактивная мощность для создания поля трансформатора поступает из сети.

При увеличении емкости во вторичной обмотке реактивная мощность не только идет на создание поля в трансформаторе, но и поступает в сеть .

Для того чтобы из сети , активная мощность поступала в сеть, необходимо, чтобы. При этом на векторной диаграмме (рис.2,а) при активно-индуктивной и активной нагрузках.

Т-образная схема замещения трансформатора состоит из трех сопротивленийz1,z/2иz12 ,в которые входят активные и индуктивные сопротивления. Определение параметров — сопротивлений схемы замещения — может быть проведено опытным и расчетным путями.

Для определения параметров схемы замещения необходимо провести два опыта — холостого хода и короткого замыкания. При определении параметров расчетным путем рассматривают режимы холостого хода и короткого замыкания.

Холостой ход трансформатора.Уравнения трансформатора при холостом ходе, когда∞, выглядят следующим образом:; (40)

; (41)

; (42)

Векторная диаграмма трансформатора при холостом ходе показана на рис. 10 Схема замещения при холостом ходе может быть получена из Т-образной схемы, если

считать(рис.11).

.

В опыте холостого хода снимаются зависимости тока холостого хода Ix потерь холостого ходаот напряжения (рис. 13).

Сопротивление взаимной индукции

(43)

Зная полное сопротивление и , определяют

(44)

Активные сопротивления первичной и вторичной обмоток трансформатора r1 иr2/находятся опытным путем при питании обмоток постоянным током. Активные, или, вернее, омические, сопротивления находят делением постоянного напряжения на ток.

Сопротивления схемы замещения трансформатора zо , хо ,rозависят от напряжения. С ростомUxиз-за насыщенияzо ихоуменьшаются и ток увеличивается. Насыщение в трансформаторе — индукцияВтзависит от приложенного к обмоткам напряженияUф, числа витков фазы обмотки пи и сечения магнитопровода S:Uф = 4,44fВm.

Потери в стали пропорциональны В2и частотеf1,3приближенно. Чтобы уменьшить потери в стали, надо уменьшать в первую очередь индукцию в стержнях и ярмах магнитопровода трансформатора.

Из опыта холостого хода определяют коэффициент трансформации как отношение напряжений на первичной и вторичной обмотках при холостом ходе:

(45)

Индуктивные сопротивления в схеме замещения, найденные экспериментально при опыте холостого хода, можно использовать при напряжении, близком к тому, при котором они найдены, так как они зависят от насыщения.

Опыт короткого замыкания.Опыт проводится при пониженном напряжении, приложенном к первичной обмотке, и замкнутой накоротко вторичной обмотке (см. рис.12).

При этом, а токи примерно равны

Уравнения при коротком замыкании:

Так как намагничивающий ток при пониженном напряжении небольшой, в опыте короткого замыкания можно считать, что, откуда следует, что

Характеристики короткого замыкания показаны на рис.14. В опыте короткого замыкания трансформатор ненасыщен, поэтому ток Iк при увеличении напряжения изменяется по линейному закону. Потери при коротком замыкании пропорциональны квадрату тока. Коэффициент мощностиостается постоянным при изменении напряжения, так как соотношение между активной и реактивной составляющими остается, практически, неизменным.

Из опыта короткого замыкания

Потери при коротком замыкании — это потери в меди. Потери короткого замыкания можно найти по формуле

(51)

где

В теории трансформаторов важное значение имеет понятие о напряжении короткого замыкания. Напряжение короткого замыкания uк— это такое напряжение, при котором в опыте короткого замыкания в обмотках трансформатора протекают номинальные токи.

Напряжение короткого замыкания определяется по следующей формуле:

, (52)

где , аzк— сопротивление короткого замыкания при температуре 75 °С.