
- •Введение.
- •Раздел №1
- •1. Краткая историческая справка. Основные понятия и определения по дисциплине «Теория надежности изделий в машиностроении».
- •1.1 Краткая историческая справка.
- •1.2 Основные понятия и определения.
- •Раздел №2
- •2. Математические основы расчета характеристик надежности и долговечности.
- •Раздел №3
- •3. Надежность технической системы
- •3.1. Надежность единичного элемента
- •3.2. Надежность элемента, работающего до первого отказа
- •3.3 Надежность технической системы
- •1. Надежность системы с независимыми элементами, работающими до первого отказа
- •1. Все элементы системы имеют основное (последовательное) соединение
- •2. Все элементы системы имеют резервное (параллельное) соединение
- •Раздел №4
- •5. Резервирование в технических системах
- •4.1. Резервирование без восстановления
- •Резервные
- •4.2. Некоторые принципиальные вопросы резервирования системы
- •4.3. Резервирование с восстановлением
- •4.4 Коэффициент готовности системы
- •Раздел №5
- •5. Основы технической диагностики
- •5.1. Основные направления технической диагностики
- •5.2. Постановка задач технической диагностики
- •5.3 Метод Байеса
- •Раздел №6
- •6. Старение технических устройств.
- •6.1 Физико-химическая механика старения технических устройств
- •6.2 Трение и износ элементов машин
- •1. Физико-механические основы процесса трения
- •2. Износ элементов и узлов машин и механизмов
- •6.3 Старение технических устройств в условиях воздействия внешней среды
- •1. Классификация внешних сред и условий.
- •2. Коррозия металлов
- •Раздел №7
- •7. Испытание элементов машин, узлов и изделий в целом на надежность и долговечность.
- •7.1 Основы статистических испытаний элементов машин на надежность
- •7.2. Обработка результатов испытаний и оценка их доброкачественности
- •7.3. Организация и планирование испытаний на надежность
- •7.4. Методы форсирования испытаний
- •Раздел №8.
- •8. Технологические способы повышения надежности и долговечности машин.
- •8.1. Упрочнение деталей машин пластическим деформированием поверхностного слоя.
- •8.1.1. Физические основы упрочнения
- •8.1.2. Дробеструйная обработка деталей машин
- •8.1.3. Упрочнение центробежно-шариковым наклепом
- •8.1.4. Упрочнение обкаткой роликами и пружинящими шариками
- •8.1.5. Упрочнение чеканкой и точением
- •8.1.6. Упрочнение наклепом деталей машин, имеющих отверстие
- •8.2. Упрочнение термическими и химико-термическими способами
- •Поверхностная закалка деталей машин
- •8.3. Нанесение покрытий на поверхности деталей машин.
- •1 Наплавка и напыление материала на рабочие поверхности деталей
- •2. Нанесение защитно-декоративных покрытий
- •Раздел №9.
- •9. Стабильность технологического и производственного процессов.
- •9.1. Оценка и управление точностью металлообрабатывающего технологического процесса.
- •9.2. Статистико-вероятностная оценка и обеспечение надежности выпускаемой продукции в различных условиях производства.
- •9.3. Организация статистического контроля и управления качеством изделий
- •9.3.1. Общие принципы организации статистического контроля
- •9.3.2. Сбор информации
- •9.3.3. Обработка статистической информации
- •9.3.4. Анализ результатов обработки
- •9.3.5. Выдача рекомендации и принятие мер по ликвидации нестабильности
- •9.4. Организация службы надежности на промышленном предприятии
8.1.3. Упрочнение центробежно-шариковым наклепом
Упрочнение центробежно-шариковым наклепом основано на использовании центробежной силы стальных шаров диаметром 7 — 12 мм, свободно перемещающихся в гнездах специального приспособления, вращающегося со скоростью 20 — 40 м/сек над обрабатываемой поверхностью.
Встречая на своем пути заготовку, двигающуюся навстречу шарикам со скоростью 30 — 90 м/мин, каждый шарик с силой ударяется об обрабатываемую поверхность и производит ее наклеп и сглаживание.
Простейшая схема центробежно-шарикового упрочнения наружной поверхности тел вращения приведена на рис. 8.5.
Приспособление 1 для упрочнения заготовки представляют собой сепаратор 3 с рядом цилиндрических отверстий по периферии, в которых находятся шарики 2. При быстром вращении центробежная сила стремится выбросить шарики из сепаратора. Но они могут выдвигаться из гнезд на величину «h» и производить наклеп поверхности. Вращение детали и заготовки показано стрелками. Такое направление увеличивает силу удара, шариков и повышает эффект упрочнения. В качестве оборудования применяют токарные, шлифовальные и другие станки общего и специального назначения. На рис. 80 дана схема установки для упрочнения тел вращения, выполненная на базе круглошлифовального станка.
а)
б)
Рис. 8.5. а) Схема приспособления для центробежно-шарикового упрочения.
б) Схема установки для упрочнения тел вращения на базе кругло-шлифовального станка.
На качество обрабатываемой поверхности влияют: материал заготовки, окружная скорость приспособления и заготовки, величина выхода шариков из гнезда сепаратора, диаметр шариков и их количество, подача и число проходов.
Глубина и степень наклепа (и, как следствие, величина остаточных напряжений сжатия) увеличиваются с увеличением диаметра шарика и подачи.
Больший выход шарика из гнезда влияет в сторону увеличения глубины и степени наклепа, но ухудшает шероховатость поверхности.
Технологический процесс обработки включает в себя:
Подготовку установки, приспособления и наладку на необходимый размер.
Выбор режимов обработки:
а) скорости вращения приспособления,
б) скорости вращения детали,
в) продольной подачи детали,
г) радиальной подачи,
д) времени обработки и числа проходов,
е) величины выхода шарика из приспособления.
При выборе режима обработки необходимо стремиться к максимально возможной твердости поверхностного слоя, максимально возможной глубине упрочненного слоя к максимально достижимой величине остаточных напряжений сжатия и минимальной шероховатости. Следует отметить, что для наклепа цветных металлов и их сплавов требуется примерно в 2 раза меньшая сила удара шарика, чем для наклепа конструкционных сталей.
Практически опыты показали, что твердость силумина после обработки повышается на 50%, ст. 25 — на 45%, чугуна — на 30 — 60%, латуни — на 60%. Шероховатость снижается на 1 — 2 класса.
Глубина наклепа: на мягких материалах 0,8 — 1,5 мм; материалы средней твердости — 0,4 — 0,8 мм.
Величина остаточных напряжений колеблется в пределах 40—80 кг/мм2. Точность формы заготовок не искажается. Размер заготовки после обработки возрастает на 3 — 5 мк на диаметр.
Центробежно-шариковый способ еще не имеет широкого применения.
Однако в последнее время он начинает применяться для окончательной обработки таких деталей, как коленчатые валы, гильзы цилиндров, поршневые кольца, вкладыши подшипников, торсионные валы.
Способ высокопроизводителен и не требует сложного оборудования.