Экспрессия генов Патрушев
.pdf811
подчеркивалось, что даже определение границ генов в ряде случаев является трудно разрешимой задачей. То же относится и к идентификации регуляторных последовательностей генов. Не исключено, что накопление новых данных о структуре генома человека, в конце концов, потребует пересмотра как критериев функциональной значимости нуклеотидных последовательностей генома, так и самой концепции гена.
Крупнейшей базой данных по структуре генома человека в настоящее время является GDB (Genome Data Base), созданная и поддерживаемая в университете Дж. Гопкинса (Балтимор, США). Кроме известных последовательностей нуклеотидов генома человека в ней хранится вся получаемая информация о генетических маркерах, зондах и контигах, ассоциированных с генетическими заболеваниями. Проводятся работы по включению в базу данных результатов физического картирования генома. В этом же университете поддерживается база данных по менделевскому наследованию у человека (Online Mendelian Inheritance in Man Database),
которая представляет собой каталог наследуемых признаков и наследственных заболеваний человека.
Четыре другие базы данных хранят все известные последовательности нуклеотидов, включая последовательности нуклеотидов генома человека: GenBank и Genome Sequence Data Base (GSDB) в США, European Molecular Biology Laboratory (EMBL) Nucleotide Sequence Database в Великобритании, а также DNA Data Bank of Japan (DDBJ). В этих базах данных в 1996 году хранилось 200 м.п.о. последовательностей нуклеотидов, предоставленных как самими авторами, так и вводимых из статей, опубликованных в периодических изданиях. В России Институтом молекулярной биологии РАН поддерживается аналогичная база данных по геному человека (Hugene) с более скромными задачами, работающая на отечественном программном обеспечении. Основной международной базой данных по последовательностям аминокислот является
Protein Identification Resource (Швейцария).
Принесет ли молекулярной генетике определение полной первичной структуры генома человека принципиально новые знания? Действительно, максимальную информацию о функционировании генома и функциональной значимости его основных частей могло бы принести только полное сравнительное секвенирование двух геномов, принадлежащих разным
812
индивидуумам. Это позволило бы отделить консервативные последовательности от последовательностей, изменяющихся в процессе онтогенеза. Ведь даже в двух соседних соматических клетках одного организма последовательности нуклеотидов различаются из-за соматического мутагенеза. Выполняемая же программа исследований по геному человека в конечном счете даст только усредненную информацию. Если же, как это предполагается в разделе 5.3, основной функцией избыточных последовательностей, составляющих 90% генома млекопитающих, является обеспечение запрограммированной скорости изменения отдельных генетических локусов под действием мутаций, и(или) поддержания пространственной структуры кодирующих частей генов, то полное секвенирование таких последовательностей будет лишено большого смысла. Каков будет конец этой истории, может показать только будущее.
813
ЗАКЛЮЧЕНИЕ
Современная генетика находится на взлете. Новые факты обнаруживаются настолько быстро, что едва хватает времени на то, чтобы просто осознать их появление. Еще труднее уловить многочисленные связи между ними. Уже сейчас многие главы монографии хотелось бы переписать заново и реализацию этого замысла сдерживает лишь бесконечность такого пути. В этом заключении я хотел бы, с известной долей субъективности, отметить несколько новых направлений генетических исследований, которые достаточно явно обозначились к настоящему времени и, на мой взгляд, могут определять некоторые будущие направления генетических исследований.
Геномика. Конец 1990-х годов отмечен определением полной первичной структуры геномов нескольких организмов. В настоящее время уже имеются полные данные о последовательности нуклеотидов целых геномов нескольких эубактерий, архебактерии и эукариотического организма – дрожжей. На подходе получение таких данных о геномах дрозофилы, нематоды C. elegans, арабидопсиса и человека. По мере развития этих исследований молекулярная биология получит через соответствующие базы данных доступ к неограниченному числу первичных структур природных белков и нуклеиновых кислот. Ключевой проблемой, которую необходимо решить в связи с накоплением такого рода информации (и которая пока далека от своего разрешения) является возможность соотнесения первичных структур открываемых новых генов с функциями кодируемых этими генами белков и нуклеиновых кислот.
Базы данных последовательностей нуклеотидов целых геномов дают возможность изучения эволюционной истории семейств белков разных видов организмов. На основании этих данных все аминокислотные последовательности организуют в виде набора 10 000 независимо эволюционирующих блоков ("модулей"). Для каждого из этих модулей на основании степени сходства или различия их аминокислотных (и соответствующих нуклеотидных) последовательностей строится эволюционное древо, которое отражает эволюционную историю семейств белков и позволяет
814
обнаруживать предполагаемые исходные полипептиды-предшественники. При этом полагают (С.Ф. Беннер с соавторами, 1998 г.), что сопоставление данных эволюционной истории белков с их биохимическими свойствами и пространственной структурой позволит, в конечном счете, связать первичную структуру полипептидов с их биологическими функциями. Решение этой ключевой проблемы геномики будет сопровождаться получением большого количества новой информации о конформации макромолекул, их надмолекулярной организации, механизмах катализа и несомненно обогатит многие области исследований в биологии и химии.
Экспрессией генов управляют большие надмолекулярные комплексы. Определение функций продуктов новых генов на основе их первичной структуры осложняется тем, что многие белки и нуклеиновые кислоты проявляют свою активность и функционируют только в составе больших надмолекулярных комплексов, размеры которых часто приближаются к размерам рибосом. При этом многие белки сами по себе не обладают ферментативной активностью, а выполняют вспомогательные функции, например, молекул-адаптеров, обеспечивающих сборку комплексов и создающих молекулярные интерфейсы для их взаимодействия с регуляторными и каталитическими субъединицами. Наличие таких комплексов, как это было установлено в последнее десятилетие, особенно характерно для клеток эукариотических организмов. Так, исследование молекулярных механизмов транскрипции у эукариот привело к развитию представления о транскриптосоме, гигантскому белковому комплексу, в который кроме холофермента РНК-полимеразы с ее многочисленными субъединицами входят факторы транскрипции, белки-адаптеры, белковые компоненты системы репарации и т.п. При этом размер транскриптосомы приближается к таковому целых рибосом. В гигантские надмолекулярные комплексы организованы и молекулярные машины системы синтеза ДНК (реплисомы), процессинга и редактирования РНК (сплайсомы и эдитосомы), молекулярные компоненты системы протеолитической деградации белков (протеасомы). Создается впечатление, что организация генетических систем, функционирующих на основных этапах реализации генетической информации, в гигантские пространственно упорядоченные комплексы, является общебиологическим принципом.
815
Комбинаторные принципы. Важным достижением исследований последних лет является обнаружение способности объединения факторов транскрипции в разных сочетаниях в большие белковые комплексы. При этом каждое новое сочетание ограниченного числа факторов придает комплексу уникальные регуляторные свойства. Возможность такого объединения определяется наличием в их полипептидных цепях гомологичных доменов, которые обеспечивают соответствующие белок-белковые взаимодействия. Реализация комбинаторного принципа позволяет клетке расширить регуляторные возможности системы транскрипции без привлечения новых генов, то есть более эффективно использовать генетическую информацию своего генома.
Принципы комбинаторики стали находить широкое применение в прикладных молекулярно-биологических исследованиях. Использование автоматических синтезаторов нуклеиновых кислот позволяет с легкостью получать в одной пробирке наборы олигонуклеотидов, содержащие все теоретически возможные нуклеотидные последовательности и следовательно ассоциированные с ними (прямо или косвенно) возможные биологические активности. Разработанные простые системы скрининга позволяют выделять из пула случайных последовательностей нуклеотидов аптамеры и молекулы рибозимов, обладающие требуемыми биологическими свойствами. С помощью систем, аналогичных фаговому дисплею, среди продуктов трансляции таких олигонуклеотидов обнаруживают новые биологически-активные пептиды.
Четырехмерные модели организации экспрессии генов.
Современные карты метаболических путей, с помощью которых пытаются с исчерпывающей полнотой представить все последовательности биохимических реакций, протекающих в клетке, своей чрезмерной сложностью обнаруживают слабость данного прямолинейного подхода к отображению биохимической информации. Попытки разворачивания на плоскости в виде двухмерной карты всей последовательности биохимических реакций, высокоупорядоченных в пространстве и во времени, делают такие всеобъемлющие схемы малоприменимыми на практике. С аналогичными трудностями придется столкнуться и генетикам при построении моделей, которые бы отображали многочисленные отношения между экспрессирующимися генами. Делом будущего является установление физических и функциональных связей между
816
надмолекулярными комплексами высокоорганизованных в пространстве генетических подсистем, которые упорядоченно изменяются во времени. Реализация такого комплексного подхода к анализу генетических систем позволит отчетливо увидеть в цитозоле и органеллах клеток единую генетическую систему организма.
Генетический индетерминизм: генотип не определяет всей нормы реакции организма. Программа-максимум, которую можно было бы сформулировать, исходя из будущих достижений геномики, это предсказание всех морфологических и физиологических особенностей взрослого организма на основании одной лишь первичной структуры его генома или генотипа его родителей. Возможно ли это? Такая постановка вопроса напоминает рассуждения философов-детерминистов о предсказании любого события в мире при наличии полных знаний об исходных условиях, в которых оно происходит, а также о причинно-следственных связях между явлениями. История науки решила эту проблему не в пользу детерминистов. Выбор путей перехода сложной физической системы в альтернативные состояния часто бывает случайным. И в этом отношении живой организм, по-видимому, не является исключением.
Неопределенность преобразования генома в индивидуальном развитии.
Неопределенность понятия гена.
Случайность и необходимость генетических изменений. Случайность и необходимость в экспрессии генов. Конечный результат экспрессии генов предопределен.
Будущее трансгеноза и генотерапии. Это будет. И совершенно безразлично - хотим мы этого или нет.
Большинство физиологических моделей, в которых делается попытка описания регуляторных воздействий на промежуточные или конечные результаты экспрессии генов на клеточном или организменном уровне, носят качественный характер. Это определяется необычайной сложностью даже самых простых биологических (а следовательно и генетических) объектов исследования. Такое состояние дел не может удовлетворить нас,
817
воспитанников школы физико-химической биологии.
Регуляция экспрессии генов: информационные сети
Все меньше надежды на простоту, подвижный мобиль
818
РЕКОМЕНДУЕМАЯ ЛИТЕРАТУРА
К введению
Barbieri M. The organic codes. The basic mechanism of macroevolution. // Biology Forum. 1998. Vol. 91. P. 481–514.
К главе 1
Георгиев Г.П. Гены высших организмов и их экспрессия. М.: Наука, 1989. 254 с.
Георгиев Г.П., Бакаев В.В. Три уровня структурной организации хромосом эукариот // Молекуляр. биология. 1978. Т.12. С. 1205–1230.
Глазков М.В. Петельно-доменная организация генов в эукариотических хромосомах // Там же. 1995. Т.29. С. 965–982.
Жимулев И.Ф. Хромомерная организация политенных хромосом. Новосибирск:
Наука, 1993. 564 с.
Молекулярная биология. Структура и биосинтез нуклеиновых кислот // Под ред. А.С. Спирина. М.: Высш. шк. 1990. 352 с.
Adams C.R., Kamakaka R.T. Chromatin assembly: Biochemical identities and genetic redundancy // Curr. Opinion Genet. Develop. 1999. Vol. 9. 185–190.
Debrauwere H., Gendrel C.G., Lechat S., Dutreix M. Differences and similarities between various tandem repeat sequences: Minisatellites and microsatellites // Biochemie. 1997. Vol. 79. P. 577–586.
Gregory T.R., Hebert P.D.N. The modulation of DNA content: Proximate causes and ultimate consequences // Genome Res. 1999. Vol. 9. P. 317–324.
Gruss C., Knippers R. Structure of replicating chromatin // Progr. Nucl. Acids Res. Mol. Biol. 1996. Vol. 52. P. 337–365.
Hart C.M., Laemmli U.K. Facilitation of chromatin dynamics by SARs // Curr. Opinion Genet. Develop. 1998. Vol. 8. P. 519–525.
819
van Holde K., Zlatanova J. What determines the folding of the chromatin fiber? // Proc. Natl. Acad. Sci. USA. 1996. Vol. 93. P. 10548–10555.
Kornberg R.D., Lorch Y. Twenty-five years of the nucleosome, fundamental particle of the eukaryote chromosome // Cell 1999. Vol. 98. P. 285–294.
Mushegian A.R., Koonin E.V. A minimal gene set for cellular life derived by comparison of complete bacterial genomes // Proc. Nat. Acad. Sci. US. 1996. Vol. 93. P. 10268–10273.
Olsen G.J., Woese C.R. Lessons from an Archaeal genome: What are we learning from Methanococcus jannaschii? // Trends Genet. 1996. Vol. 12. P. 377–379.
Poljak L., Kas E. Resolving the role of topoisomerase II in chromatin structure and function // Trends Cell Biol. 1995. Vol. 5. P. 348–354.
Razin S.V. Functional architecture of chromosomal DNA domains // Crit. Rev. Eukaryotic Gene Expression. 1996. Vol. 6. P. 247–269.
Robinow C., Kellenberger E. The bacterial nucleoid revisited // Microbiol. Rev. 1994. Vol. 58. P. 211–232.
Workman J.L., Kingston R.E. Alteration of nucleosome structure as a mechanism of transcriptional regulation // Annu. Rev. Biochem. 1998. Vol. 67. PP. 545–579.
К главе 2
Молекулярная биология: Структура и биосинтез нуклеиновых кислот / Под ред. А.С. Спирина. М.: Высш. шк. 1990. 352 с.
Спирин А.С. Молекулярная биология. Структура рибосомы и биосинтез белка.
М.: Высш. шк., 1986. 303 с.
Chakraburtty K. Functional interaction of yeast elongation factor 3 with yeast ribosomes // Intern. J. Biochem. Cell Biol. 1999. Vol. 31. P. 163–173.
Cate J.H., Yusupov M.M., Yusupova G.Zh. et al. X-ray crystal structures of 70S ribosome functional complexes // Science. 1999. Vol. 285. P. 2095–2104.
Edmondson D.G., Roth S.Y. Chromatin and transcription // FASEB J. 1996. Vol. 10. P. 1173–1182.
820
Frank J. The ribosome at higher resolution – the donut takes shape // Curr. Opinion Struct. Biol. 1997. Vol. 7. P. 266–272.
Futterer J., Hohn T. Translation in plants – rules and exceptions // Plant Mol. Biol. 1996. Vol. 32. P. 159–189.
Green R., Noller H.F. Ribosomes and translation // Annu. Rev. Biochem. 1997. Vol. 66. P. 679–716.
Gregory P.D., Hörz W. Life with nucleosomes: Chromatin remodeling in gene regulation // Curr. Opinion Cell Biol. 1998. Vol. 10. P. 339–345.
Hampsey M. Molecular genetics of the RNA polymerase II general transcriptional machinery // Microbiol. Mol. Biol. Rev. 1998. Vol. 62. P. 465–503.
Hodges P., Scott J. Apolipoprotein B mRNA editing: A new tier for control of gene expression // Trends Biochem. Sci. 1992. Vol. 17. P. 77–81.
Koleske A.J., Young R.A. The RNA polymerase holoenzyme and its implications for gene regulation // Ibid. 1995. Vol. 20. P. 113–116.
Lamond A.I., Earnshaw W.C. Structure and function in the nucleus // Science. 1998. Vol. 280. P. 547–553.
Latchman D.S. Transcription factors: An overview // Intern. J. Biochem. Cell. Biol. 1997. Vol. 29. P. 1305–1312.
Lewis J.D., Izaurralde E. The role of the cap structure in RNA processing and nuclear export // Europ. J. Biochem. 1997. Vol. 247. P. 461–469.
McCarthy J.E.G. Posttranscriptional control of gene expression in yeast // Microbiol. Mol. Biol. Rev. 1998.Vol. 62. P. 1492–1553.
McKendrick L., Pain V.M., Morley S.J. Translation initiation factor 4E // Intern. J. Biochem. Cell. Biol. 1999. Vol. 31. P. 31–35.
Morse R.H. Transcribed chromatin // Trends Biochem. Sci. 1993. Vol. 17. P. 23–25.
Orphanides G., Lagrange T., Reinberg D. The general transcription factors of RNA polymerase II // Gen. Develop. 1996. Vol. 10. P. 2657–2683.
Reines D., Conaway J.W., Conaway R.C. The RNA polymerase II general elongation factors // Trends Biochem. Sci. 1996. Vol. 21. P. 351–355.
