Экспрессия генов Патрушев
.pdf541
когда различные по специфичности действия рестриктазы присутствуют в клетках разных штаммов одного вида бактерий, в название рестриктазы вводят дополнительную букву, например рестриктазы Hinc и Hind выделены из бактериальных клеток Haemophilus influenzae, штаммы с и d. Цифры, следующие за буквенными обозначениями, отражают последовательность открытия соответствующих рестриктаз в клетках бактерий одного вида,
например HaeI, HaeII и HaeIII из H. aegipticus.
Рестриктазы типа II – основной инструмент генной инженерии. Большинство рестриктаз типа II специфически узнают на ДНК тетра- и гексануклеотидные последовательности, а по крайней мере три из них – октануклеотиды. Чем короче олигонуклеотидная последовательность сайта рестрикции, узнаваемого рестриктазой, тем чаще он встречается в случайной последовательности нуклеотидов, в которой каждый из четырех нуклеотидов представлен с одинаковой частотой (50% А–Т-пар и 50% G–С-пар). Так, случайная тетрануклеотидная последовательность встречается в среднем через каждые 256 п.о. (44), а гексануклеотидная – через каждые 4096 п.о. (46). Однако в природных ДНК распределение нуклеотидов может заметно отличаться от случайного. Например, для эукариотических ДНК характерна низкая частота встречаемости динуклеотида CpG и соответственно сайтов рестрикции, содержащих эти динуклеотиды (рестриктазы HhaI, HpaII, TaqI, ThaI, AvaI, HaeII, HindII, SalI, SmaI, XhoI, XmaI). Существенное отклонение частоты встречаемости сайтов рестрикции от ожидаемого при случайном их распределении вдоль ДНК свойственно и хромосомам термофильных бактерий, которым, напротив, свойственно (хотя и не во всех случаях) обогащение по G– С-парам. Для большинства сайтов, узнаваемых рестриктазами типа II, характерно наличие в них симметрии второго порядка, т.е. узнаваемые ими последовательности представляют собой палиндромы, например у рестриктазы EcoRI – 5’-GAATTC-3’. Это означает, что нуклеотиды, расположенные в каждой из цепей на равном расстоянии от оси симметрии, комплементарны друг другу. Если точки расщепления противоположных цепей ДНК смещены друг относительно друга в сайте рестрикции, то образующиеся в результате рестрикции концы ДНК содержат выступающие одноцепочечные участки. Поскольку такие участки комплементарны сами себе и друг другу и могут между собой взаимодействовать, их часто называют "липкими" концами. В "липких"
542
концах выступающим одноцепочечным участком может быть как 5’-, так и 3’- конец (рис. II.1,а). Формальным признаком образования 5’- или 3’-выступающих "липких" концов в сайтах рестрикции является расположение точки расщепления цепей ДНК в последовательности, используемой для обозначения сайта рестрикции, слева или справа от оси симметрии соответственно. У некоторых рестриктаз точки расщепления обеих цепей ДНК расположены непосредственно друг под другом в сайте рестрикции. В этом случае после расщепления ДНК "липких" концов не образуется, а получаются так называемые "тупые" концы, в которых нет выступающих одноцепочечных участков ДНК (см. рис. II.1,а). Имеется одно принципиальное функциональное различие между 5’- и 3’-выступающими "липкими" концами – последние невозможно пометить путем их достройки ДНК-полимеразой. Эту особенность следует иметь в виду при выборе рестриктаз для получения рестрикционных фрагментов ДНК, которые предполагается использовать в качестве зондов.
При конструировании рекомбинантных молекул полезно помнить, что, хотя рестриктазы BamHI, BclI, BglII и XhoII узнают разные сайты рестрикции, они образуют одни и те же "липкие" концы, GATC. То же характерно и для группы рестриктаз SalGI, XhoI и AvaI (NCGA). При лигировании (см. ниже) фрагментов ДНК, образованных рестриктазами одной из таких групп, происходит их объединение, но при этом исходные сайты рестрикции теряются, так как в результате образуется новая непрерывная последовательность нуклеотидов (см. рис. II.1,б). Сайты рестрикции для некоторых рестриктаз II типа не являются симметричными. Например, рестриктаза HgaI узнает асимметричную последовательность 5’-GACGC-3’, а одноцепочечные разрывы вносит в противоположные цепи ДНК, отступя вправо на 5 и 10 нуклеотидов соответственно:
5’-GACGC(N)5↓
3’-CTGCG(N)5(N)5↓
Последовательности нуклеотидов образующихся "липких" концов являются уникальными для каждого такого сайта рестрикции. Вследствие этого рестрикционные фрагменты ДНК, образовавшиеся под действием данной рестриктазы, в смеси соединяются друг с другом лишь в строго определенной
543
исходной последовательности, которая задается уникальными последовательностями нуклеотидов в "липких" концах рестрикционных фрагментов ДНК. Например, при расщеплении этой рестриктазой репликативной формы ДНК фага φX174 образуется 14 фрагментов, которые in vitro объединяются в правильную последовательность с образованием инфекционной φX174-ДНК.
Универсальные рестриктазы для одноцепочечных ДНК. На основе рестриктаз, узнающих асимметричные последовательности нуклеотидов, разработана система, позволяющая расщеплять молекулы одноцепочечной ДНК в любой заданной точке. С этой целью синтезируется олигонуклеотид, 5’- концевая часть которого содержит сайт, узнаваемый такой рестриктазой, а последовательность нуклеотидов 3’-концевой части комплементарна участку ДНК, в который необходимо внести эндонуклеазный разрыв. В результате гибридизации олигонуклеотида с одноцепочечной ДНК образуется структура, изображенная на рис. II.2. При этом фермент взаимодействует с сайтом узнавания (участок I), а разрывы вносятся по местам, обозначенным стрелками. Таким образом, положение места эндонуклеазного расщепления будет целиком зависеть от последовательности нуклеотидов участка II синтетического олигонуклеотида, комплементарного ДНК-субстрату.
Рис. II.2. Расщепление одноцепочечной ДНК универсальной рестриктазой
а – синтетический олигонуклеотид; б – одноцепочечная ДНК. После образования шпильки и гибридизации с одноцепочечной ДНК-
мишенью олигонуклеотид образует сайт связывания рестриктазы (участок I) и сайт расщепления ДНК-ДНК-гибрида (участок II). Стрелки указывают места эндонуклеазного расщепления ДНК и олигонуклеотида
544
Изошизомеры. В клетках разных видов бактерий могут содержаться рестриктазы, узнающие одни и те же сайты рестрикции. Такие рестриктазы называют изошизомерами. Изошизомеры некоторых рестриктаз с успехом используются для обнаружения метилированных участков ДНК в геноме. Так, рестриктазы HhaI и HpaII расщепляют неметилированные последовательности GCGC и CCGG соответственно и утрачивают способность к расщеплению, если хотя бы один из остатков цитозина в этих сайтах метилирован. В то же время фермент MspI (изошизомер HpaII) расщепляет последовательность CCGG независимо от того, метилированы или неметилированы остатки цитозина в таком сайте. N-Метилирование остатков аденозина в ДНК можно обнаружить с помощью изошизомеров Sau3A (расщепляет как метилированные, так и неметилированные последовательности GATC), DpnI (расщепляет только метилированные последовательности GMeATC) и MboI (расщепляет только неметилированные последовательности).
Изменение специфичности действия рестриктаз в неоптимальных условиях. Рестриктазы являются высокоспецифическими ферментами. Однако для поддержания этой специфичности in vitro необходимо соблюдать в реакционной смеси оптимальные условия для действия ферментов. При нарушении таких условий у некоторых рестриктаз начинает проявляться вторичная (так называемая штриховая) активность. Так, рестриктаза EcoRI расщепляет последовательность GAATTC при pH 7,3, 100 мМ NaCl в присутствии 5 мМ MgСl2, однако при изменении значений pH, понижении концентрации NaCl или замене ионов Mg2+ на Mn2+, а также в присутствии органических растворителей у фермента появляется тенденция к расщеплению более короткой последовательности AATT (так называемая активность EcoRI). К рестриктазам, обладающим подобными свойствами, относятся также BamHI,
BstI, BsuI, DdeI, HhaI, PstI, SalI, SstI, XbaI.
Действие рестриктаз на необычные субстраты. Помимо двухцепочечных ДНК многие рестриктазы способны использовать ДНК-РНК- гибриды в качестве субстрата. Это относится, в частности, к рестриктазам
EcoRI, HindII, SalI, MspI, HhaI, AluI, TaqI и HaeIII. Некоторые рестриктазы,
например HaeIII, HhaI и SfaI, способны расщеплять одноцепочечную ДНК фага φX174, хотя и со значительно меньшей скоростью, чем соответствующую двухцепочечную RF-форму. Такая способность была продемонстрирована для
545
некоторых других рестриктаз, а также ДНК-субстратов. Остается неясным, узнают ли эти рестриктазы истинные одноцепочечные сайты или же последовательности нуклеотидов, заключенные в элементы вторичной структуры.
С развитием метода полимеразной цепной реакции (ПЦР) (см. ниже) часто возникает необходимость расщепления рестриктазами амплифицированных олигонуклеотидов недалеко от их концов, т.е. в условиях, когда сайт рестрикции фланкирован с одного из своих концов одним или несколькими нуклеотидами. В этом случае установлена четкая зависимость способности определенных рестриктаз расщеплять сайты рестрикции от количества фланкирующих сайт нуклеотидов. Данное свойство рестриктаз объясняют, в частности тем, что на самих концах двухцепочечной молекулы ДНК происходит локальное плавление двойной спирали ДНК с образованием коротких одноцепочечных участков, захватывающих сайт узнавания рестриктазами. Частично избежать локальное плавление можно понижением температуры реакционной смеси во время проведения рестрикции таких олигонуклеотидов. Поскольку эти данные имеют большое значение для практической генной инженерии, они суммированы в табл. II.1.
546
Таблица II.1
Эффективность расщепления коротких последовательностей ДНК некоторыми распространенными рестриктазами
Рестриктаза |
Последовательность |
Длина |
Процент расщепления |
|
|
олигонуклеотидов в |
цепи, нт |
олигонуклеотида после |
|
|
окрестностях сайта |
|
инкубации в течение |
|
|
рестрикции |
|
|
|
|
|
2 ч |
20 ч |
|
|
|
|
|
|
BamHI |
CGGATCCG |
8 |
10 |
25 |
|
CGGGATCCCG |
10 |
>90 |
>90 |
|
CGCGGATCCCGC |
12 |
>90 |
>90 |
BglII |
CAGATCTG |
8 |
0 |
0 |
|
GAAGATCTTC |
10 |
75 |
>90 |
|
GGAAGATCTTCC |
12 |
25 |
>90 |
ClaI |
CATCGATT |
8 |
0 |
0 |
|
GATCGATC |
8 |
0 |
0 |
|
CCATCGATGG |
10 |
>90 |
>90 |
|
CCCATCGATGGG |
12 |
50 |
50 |
EcoRI |
GGAATTCC |
8 |
>90 |
>90 |
|
CGGAATTCCG |
10 |
>90 |
>90 |
|
CCGGAATTCCGG |
12 |
>90 |
>90 |
HindIII |
CAAGCTTG |
8 |
0 |
0 |
|
CCAAGCTTGG |
10 |
0 |
0 |
|
CCCAAGCTTGGG |
12 |
10 |
75 |
NheI |
GGCTAGCC |
8 |
0 |
0 |
|
CGGCTAGCCG |
10 |
10 |
25 |
|
CTAGCTAGCTAG |
12 |
10 |
50 |
PstI |
GCTGCAGC |
8 |
0 |
0 |
|
TGCACTGCAGTGCA |
14 |
10 |
10 |
547
Таблица II.1 (окончание)
Рестриктаза |
Последовательность |
Длина |
Процент расщепления |
|
|
олигонуклеотидов в |
цепи, нт |
олигонуклеотида после |
|
|
окрестностях сайта |
|
инкубации в течение |
|
|
рестрикции |
|
|
|
|
|
2 ч |
20 ч |
|
|
|
|
|
|
PvuI |
CCGATCGG |
8 |
0 |
0 |
|
ATCGATCGAT |
10 |
10 |
25 |
|
TCGCGATCGCGA |
12 |
0 |
10 |
SacI |
CGAGCTCG |
8 |
10 |
10 |
SacII |
GCCGCGGC |
8 |
0 |
0 |
|
TCCCCGCGGGGA |
12 |
50 |
>90 |
SmaI |
CCCGGG |
6 |
10 |
10 |
|
CCCCGGGG |
8 |
10 |
10 |
|
CCCCCGGGGG |
10 |
0 |
50 |
|
TCCCCCGGGGGA |
12 |
0 |
>90 |
SpeI |
GACTAGTC |
8 |
10 |
>90 |
|
GGACTAGTCC |
10 |
10 |
>90 |
|
CGGACTAGTCCG |
12 |
0 |
50 |
|
CTAGACTAGTCTAG |
14 |
0 |
50 |
SphI |
GGCATGCC |
8 |
0 |
0 |
|
CATGCATGCATG |
12 |
0 |
25 |
|
ACATGCATGCATGT |
14 |
10 |
50 |
XbaI |
CTCTAGAG |
8 |
0 |
0 |
|
GCTCTAGAGC |
10 |
>90 |
>90 |
|
TGCTCTAGAGCA |
12 |
75 |
>90 |
|
CTAGTCTAGACTAG |
14 |
75 |
>90 |
XhoI |
CCTCGAGG |
8 |
0 |
0 |
|
CCCTCGAGGG |
10 |
10 |
25 |
|
CCGCTCGAGCGG |
12 |
10 |
75 |
Примечание. Курсивом выделены последовательности сайтов рестрикции.
548
ДНК-метилазы. Большинство штаммов E. coli содержит два типа ферментов, метилирующих ДНК: dam- и dcm-метилазы. Первая осуществляет перенос метильных групп в N-положение аденина в последовательности GATC. В таком случае многие рестриктазы (например BclI, MboI или ClaI), в состав сайтов рестрикции которых входит данная метилированная последовательность, перестают расщеплять ДНК по этим сайтам. Аналогичное действие на некоторые рестриктазы, например EcoRII, оказывает и dcmметилаза, осуществляющая метилирование остатков цитозина по положению С5 в последовательностях CMeCAGG и CMeCTGG. Для того чтобы избежать нежелательного влияния этих метилаз на клонируемые ДНК, в качестве хозяев используют мутантные штаммы E. coli: dam- и dcm-. ДНК-метилазы бактериальных систем рестрикции и модификации применяют для блокирования in vitro соответствующих сайтов рестрикции на исследуемых фрагментах ДНК с целью получения под действием гомологичных рестриктаз фрагментов больших размеров.
7.1.2. ДНК- и РНК-лигазы
Создание фосфодиэфирных связей в одноцепочечных разрывах двухцепочечной ДНК с помощью ДНК-лигаз является наряду с рестрикцией одним из важнейших этапов получения рекомбинантных ДНК in vitro. Наибольшее применение в генно-инженерных исследованиях находит ДНКлигаза бактериофага Т4. Реакция лигирования протекает в два этапа (рис. II.3). Вначале образуется промежуточный комплекс фермент–АМР (этап 1), после чего остаток АМР переносится на 5’-фосфатную группу концевого нуклеотида в точке разрыва ДНК (этап 2). Образовавшаяся фосфодиэфирная связь гидролизуется во время нуклеофильной атаки 3’-ОН группы соседнего нуклеотида, что приводит к образованию новой фосфодиэфирной связи, восстанавливающей целостность сахаро-фосфатного остова ДНК. Т4-ДНК- лигаза осуществляет соединение фрагментов двухцепочечной ДНК, обладающих комплементарными "липкими" или "тупыми" концами. Как следует из механизма реакции, необходимым условием протекания лигирования является наличие 5’-концевого фосфата и 3'-концевого гидроксила в точках разрыва цепей ДНК. При этом эффективность соединения фрагментов ДНК по "тупым" концам Т4-ДНК-лигазой возрастает в присутствии Т4-РНК-лигазы,
549
которая осуществляет ковалентное соединение 5’-фосфорилированных концов одноцепочечных ДНК или РНК с 3’-ОН группами одноцепочечных нуклеиновых кислот.
Рис. II.3. Механизм лигирования ДНК Т4-ДНК-лигазой
1 – образование промежуточного комплекса фермент Е–AMP; 2 – образование фосфодиэфирной связи
7.1.3.Ферменты матричного синтеза ДНК и РНК
Кферментам матричного синтеза нуклеиновых кислот относятся многочисленные ДНК- и РНК-зависимые ДНК- и РНК-полимеразы, осуществляющие зависимый от матричных ДНК или РНК синтез нуклеиновых кислот. Эти ферменты обычно используются в генной инженерии для получения двухцепочечных молекул ДНК из одноцепочечных, а также для обратной транскрипции, т.е. синтеза двухцепочечных ДНК, комплементарных мРНК, которые называют комплементарными ДНК (кДНК).
ДНК-зависимые ДНК-полимеразы. Среди ДНК-зависимых ДНК-
полимераз наибольшее применение в генной инженерии находят ДНКполимераза I E. coli и ее большой фрагмент (фрагмент Кленова), Т4-ДНК-
550
полимераза и в последнее время термостабильные ДНК-полимеразы, особенно ДНК-полимераза Thermus aquaticus (Taq-полимераза). Все эти ферменты в присутствии ионов Mg2+ из четырех дезоксирибонуклеозидтрифосфатов (dATP, dCTP, dGTP и TTP) осуществляют синтез ДНК, комплементарной матричной ДНК, и для функционирования требуют наличия затравки на одноцепочечной матричной ДНК, т.е. олигоили полидезоксирибонуклеотида со свободным 3’- ОН-концом, комплементарного матричной ДНК. ДНК-полимераза I E. coli состоит из одной полипептидной цепи с молекулярной массой около 109 кДа и обладает тремя активностями: полимеризующей в направлении 5’→3’, 5’→3’-
экзонуклеазной и 3’→5’-экзонуклеазной. Большой фрагмент ДНК-полимеразы I E. coli (фрагмент Кленова) является частью полипептидной цепи ДНКполимеразы I с молекулярной массой около 76 кДа, у которой отсутствует домен, соответствующий 5’→3’-экзонуклеазе. Как ДНК-полимераза I, так и ее фрагмент используются для введения радиоактивно меченных дезоксирибонуклеотидов в синтезируемые цепи ДНК путем ник-трансляции, т.е. перемещения одноцепочечного разрыва вдоль молекулы двухцепочечной ДНК, в котором 3’-ОН-конец используется в качестве затравки для ферментов. При этом ДНК-полимераза I прокладывает себе путь с помощью 5’→3’- экзонуклеазы, а фрагмент Кленова вытесняет цепь ДНК с 5’-конца. Кроме того, фрагмент Кленова используют для синтеза второй цепи кДНК, секвенирования ДНК по методу Сенгера, заполнения 5’-выступающих "липких" концов ДНК с образованием "тупых" концов, введения концевой радиоактивной метки, а также для удаления 3’-выступающих концов рестрикционных фрагментов ДНК 3’→5’- экзонуклеазой этого фермента. Как и ДНК-полимераза I E. coli, Т4-ДНК- полимераза обладает 3’→5’- (но не 5’→3’-) экзонуклеазной активностью, которая у последней, по крайней мере, в 200 раз выше. Это позволяет использовать Т4-ДНК-полимеразу, в частности, для введения радиоактивной метки путем реакции обмена немеченного 3’-концевого нуклеотида на меченный радиоактивным изотопом.
Полимеразная цепная реакция (ПЦР). Термостабильная Taq-
полимераза в настоящее время широко используется для проведения полимеразной цепной реакции (ПЦР), а ее модифицированный аналог – и для секвенирования ДНК по методу Сенгера. Сущность ПЦР заключается в
