Экспрессия генов Патрушев
.pdf511
этой группе хромосом 2, 10 и 14 характерны два участка периодически расположенных летальных генов. При этом участки хромосомы 3, обладающие очень близкими периодами, локализованы симметрично относительно центра хромосомы, в окрестностях которого летальные гены пока не обнаружены. Равные по своим размерам хромосомы 10 и 14 обладают похожим строением в отношении анализируемого признака: за участком с меньшей периодичностью следует область хромосомы, на которой расстояние между летальными генами или их кластерами больше.
На хромосомах 4, 8 и 13 можно выделить по три области с периодически расположенными летальными генами, структура которых очень похожа. В этом случае области с меньшими периодами фланкируют участки хромосом, на которых расстояния между периодически расположенными летальными генами больше. Интересно, что на хромосоме 8 близкие по периодичности концевые участки (периоды 22,3 и 23,7 т.п.о.) расположены симметрично относительно центральной области хромосомы, для которой характерен приблизительно вдвое больший период чередования жизненно важных генов (40,9 т.п.о.). Не исключено, что по мере открытия новых летальных генов в центральной части этой хромосомы все три участка сольются в единую область, периодичность расположения летальных генов в которой будет близка таковой в отмеченных концевых участках (22–23 т.п.о.).
Для крупной хромосомы 15 характерно наличие пяти участков с периодически расположенными летальными генами. И на этот раз периоды участков 1, 3 и 5 очень близки (20,5; 23,0 и 23,9 т.п.о. соответственно). В то же время расстояния между периодически расположенными жизненно важными генами этой хромосомы на участке 2 приблизительно вдвое больше (46,2
т.п.о.).
Несмотря на то что точные числовые значения периодов в расположении летальных генов различаются как между хромосомами, так и между конкретными участками индивидуальных хромосом дрожжей, складывается впечатление об универсальном характере расположения анализируемых летальных генов. Действительно, среди 29 обнаруженных участков с периодическим расположением летальных генов на 16 исследованных хромосомах у 17 из них значения периодов лежат в пределах 19,7–25,8 т.п.о., а из оставшихся 12, по крайней мере, три значения могут рассматриваться как
512
кратные им, т.е. они подтверждают ту же структурную закономерность. Обнаруженная периодичность в расположении жизненно важных генов хромосом дрожжей может указывать на наличие в интерфазных ядрах дрожжей периодически повторяющихся пространственных структур хроматина высокого порядка, что может создавать особые биохимические условия для находящихся в них генов, например иметь отношение к защите жизненно важных генов от мутаций, как физически, так и обеспечивая эффективное функционирование ферментов системы репарации.
Периодичность расположения жизненно важных генов на хромосомах дрожжей как возможное отражение пространственной структуры хроматина. Существование информационных макромолекул, особенно таких гигантских, как молекулы ДНК, полностью зависит от их упорядоченной пространственной структуры. Последовательные циклы компактизации и декомпактизации хроматина сопровождают каждое деление эукариотических клеток и являются одним из самых универсальных и распространенных генетических процессов в живой природе. Точность и эффективность этого процесса очень высоки. Если исходная пространственная структура хроматина в интерфазных ядрах еще во многом остается непонятной, то структура метафазных хромосом, выявляемая на цитогенетическом уровне, является консервативным видоспецифическим признаком. Последние модели строения метафазных хромосом указывают на наличие у них центрального остова, включающего в себя тандемно повторяющиеся MAR/SAR-последовательности, и упорядоченных боковых петель хроматина. Трудно представить себе, чтобы имеющиеся связи между участками хроматина, сближенными в метафазных хромосомах, полностью утрачивались при его декомпактизации в интерфазе клеточного цикла, поскольку это должно было бы затруднять и замедлять его циклически повторяющуюся сборку в начале каждого митоза. Одним из указаний на сохранение таких связей является наличие в интерфазных ядрах особых хромосомных зон, занимаемых индивидуальными декомпактизованными хромосомами, которые не перемешиваются друг с другом.
Основа пространственной упорядоченности ДНК в составе хроматина заложена в ее первичной структуре. Как известно, монотонно следующие друг за другом четыре азотистых основания ДНК образуют правильную двойную
513
спираль, шаг которой в случае B-формы ДНК составляет 10,5 нуклеотидов на виток двойной спирали. Именно такая монотонная организация молекулы ДНК в конечном итоге дает возможность формироваться на ней, как на матрице и прямом участнике процесса, периодически повторяющихся нуклеосом. На этом первом уровне пространственной организации хроматина так называемые коровые частицы нуклеосом (тетрамер гистонов H3/H4, фланкированный димерами гистонов H2A/H2B, с закрученным вокруг них участком ДНК длиной в 146 п.о.) разделены участками линкерной ДНК длиной ~50 п.о. Особенности пространственной структуры хроматина на более высоких уровнях (соленоид и петельно-доменный уровни компактизации хроматина) до конца не ясны и попрежнему остаются предметом дискуссий. Имеющиеся экспериментальные данные указывают на существование периодически повторяющихся пространственных структур и на высших уровнях упаковки интерфазного хроматина.
Ограниченная инкубация нативного хроматина животных и растений с нуклеазами позволяет обнаруживать с помощью электрофореза в импульсном электрическом поле образование дискретных фрагментов ДНК двух классов: крупных, длиной ~300 т.п.о. и более коротких – ~50 т.п.о. Использование топоизомеразы для расщепления ДНК в основаниях петель, ассоциированных с ядерным матриксом, приводит к накоплению фрагментов ДНК приблизительно того же размера. Наконец, деградация ДНК на ранних стадиях апоптоза начинается с образования аналогичных по размерам фрагментов геномной ДНК. К сожалению, соответствующие данные относительно пространственной организации хроматина дрожжей мне неизвестны. Помимо выше отмеченных факторов материальной основной формирования периодически организованных пространственных структур хроматина могут быть и повторяющиеся последовательности нуклеотидов, в большом количестве встречающиеся в геноме высших эукариот.
Обнаруженное в ходе нашего исследования периодическое распределение летальных генов вдоль всех 16 хромосом дрожжей по-своему указывает на наличие возможной связи между пространственной структурой их хроматина и функциональной значимостью генетического материала, включенного в соответствующие последовательности. Как уже отмечалось выше, значения большинства периодов между летальными генами и/или их
514
кластерами лежат в пределах 20–26 т.п.о., что представляет собой величину того же порядка, что и размеры фрагментов ДНК, образующихся при ограниченном нуклеазном гидролизе нативного хроматина. На мой взгляд, жизненно важные гены дрожжей маркируют места хромосом, наиболее безопасные для их существования. Поскольку наибольшую опасность для клетки представляют мутации, инактивирующие их летальные гены, места их расположения могут быть в большей степени защищены от действия химических мутагенов, с которыми организм в избытке сталкивается в процессе своей жизнедеятельности. Такую защиту для последовательностей нуклеотидов могли бы обеспечивать, например внутренние части хроматиновых глобул. Действительно, уже сам факт наличия у нативного хроматина упорядоченно расположенных участков ДНК, в большей или меньшей степени защищенных от действия нуклеаз (что и дает возможность образования характерных дискретных фрагментов ДНК), однозначно указывает на существование в хроматине последовательностей нуклеотидов, по-разному защищенных от действия мутагенов. В соответствии с вышеизложенным мы предполагаем наличие вдоль хромосом дрожжей периодически повторяющихся мест с большей или меньшей защищенностью от действия мутагенов. В зависимости от тонкой пространственной структуры хроматина в этих участках уровни защищенности последовательностей нуклеотидов от мутагенов могут варьировать от участка к участку и приводить к генетической детерминированности скоростей спонтанного мутагенеза в конкретных генетических локусах.
Возможное биологическое значение обнаруженной периодичности расположения летальных генов на хромосомах дрожжей. Хроматин всех эукариот построен в общих чертах одинаково, поэтому обнаруженные у дрожжей особенности его строения и вытекающие из этого следствия хотелось бы рассмотреть применительно и к геному высших эукариот. В этой связи необходимо обратить внимание на четыре момента развиваемой концепции, которые могут иметь общебиологическое значение.
1. Значительно большее разнообразие последовательностей нуклеотидов различных типов, присутствующих в геноме высших эукариот, по сравнению с геномом дрожжей, создает условия для формирования более разнообразных и богатых в функциональном отношении пространственных
515
структур хроматина в интерфазных ядрах. Наличие же таких структур, в свою очередь, предполагает существование у высших эукариот и более тонкого контроля скоростей спонтанного мутагенеза в конкретных генетических локусах по обсуждаемому механизму. Такая разная генетическая детерминированность темпов мутационных изменений генетических локусов у биологических видов могла бы контролировать направление их возможных эволюционных преобразований и историческое развитие таксонов.
2.Наличие в интерфазных ядрах эукариот участков ДНК, максимально защищенных от действия мутагенов, предполагает существование в них и генетических локусов с минимальным уровнем защиты. Из этого следует, что делеции или вставки в окрестностях защищенных локусов могут сдвигать генетические локусы в менее благоприятное, с точки зрения защиты, положение на хромосоме. Для менее защищенных локусов могут возникать обратные ситуации. Следовательно, делеции или вставки, а также природный геномный полиморфизм (в частности обнаруживаемый по длинам рестрикционных фрагментов ДНК) могут быть причиной (и новым механизмом) возникновения локального мутаторного фенотипа в соматических клетках высших организмов. Известно, что мутаторный фенотип часто предшествует малигнизации клеток и сопровождает рост опухолей. Если предполагаемый нами механизм функционирует, то возникновение делеции или вставки по соседству с критическим локусом (протоонкогеном или антионкогеном), контролирующим развитие заболевания, должно переводить мутантный организм в группу риска с повышенной вероятностью изменения этого локуса под действием мутаций. Другим примером могла бы быть лейденская мутация
вфакторе V системы свертывания крови, ассоциированная с развитием тромбозов, которая чрезвычайно широко распространена в европейской популяции и не встречается у ориенталов. Это и другие подобные явления можно объяснить неблагоприятным пространственным расположением соответствующего генетического локуса в интерфазном ядре у индивидуумов европейской популяции, принадлежащих к группе риска, которое делает локус легко доступным для химических мутагенов или препятствует функционированию ферментов системы репарации.
3.Исходя из всего вышеизложенного, можно полагать, что
"избыточные" последовательности генома эукариот обеспечивают
516
необходимую пространственную структуру хроматина в интерфазных ядрах, создавая оптимальные условия для генов с точки зрения их экспрессии и защиты от мутационных изменений, что является жизненно важным фактором существования эукариот.
4. Интроны в генах эукариот могут обеспечивать специфическое пространственное расположение экзонов в интерфазных ядрах, оптимальное с точки зрения их защиты от мутаций и эффективности экспрессии генов. Например, делеционное удаление интронов из гена может приводить к тому, что его 5'-концевая регуляторная часть в процессе упаковки ДНК в хроматин попадет внутрь хроматиновой глобулы и станет недоступной РНКполимеразам, факторам транскрипции и другим регуляторным белкам. В такой ситуации наиболее важными для гена становятся длины его интронов, а не их первичная структура.
5.3.5.Возможный смысл парадокса С
Уорганизмов, находящихся на примерно одинаковых ступенях эволюционного развития, часто наблюдаются значительные вариации в размерах геномов (см. главу 1). Например, у некоторых видов рыб, относящихся к разным отрядам и подклассам, размеры геномов заметно различаются. Наименьшие геномы характерны для некоторых неродственных видов костистых рыб. В частности, у малоротой корюшки, меченосца или камбалы размер генома приблизительно в 5 раз меньше генома млекопитающих. В то же время у двоякодышащих рыб (одни из немногих выживших представителей кистеперых рыб, которые морфологически практически не изменились за миллионы лет своего существования) размер генома, по крайней мере, в 35 раз превышает размер генома плацентарных млекопитающих. Ввиду большого морфологического и физиологического сходства этих видов рыб можно предположить, что различия в размерах их геномов, главным образом, определяются относительным содержанием в них избыточных последовательностей нуклеотидов.
Развивая концепцию о стабилизирующем влиянии избыточных последовательностей нуклеотидов ДНК на генетическую информацию, заключенную в геноме многоклеточных организмов, можно предполагать, что различия в размерах геномов у близких видов многоклеточных организмов
517
отражают существенные особенности в функционировании их генетического аппарата и его внутриклеточного окружения. У организмов с высоким содержанием избыточной ДНК могут менее эффективно функционировать ферменты репаративной системы, что, в свою очередь, усиливает (имитирует) экзогенное и эндогенное мутагенные воздействия. Действительно, эффективность функционирования систем эксцизионной репарации, повидимому, существенно различается даже в клетках разных видов млекопитающих. Кроме того, у таких организмов могло бы быть более высоким внутриядерное содержание эндогенных мутагенов в силу видовых особенностей их метаболизма. В связи с этим весьма вероятно, что гигантский размер геномов двоякодышащих рыб и амфибий отражает одну или несколько таких особенностей функционирования их генетического аппарата и его внутриклеточного окружения. Эволюционное включение в их геном большого количества защитных избыточных последовательностей нуклеотидов могло значительно стабилизировать геном и, по-видимому, позволило этим организмам пройти морфологически неизменными через миллионы лет своего существования. С другой стороны, малый размер генома других видов может сочетаться с более эффективно работающими системами репликации и репарации, а также способствовать ускоренному видообразованию.
Таким образом, повышение точности функционирования систем репликации и репарации ДНК, с одной стороны, и увеличение размера генома за счет включения в него некодирующих последовательностей нуклеотидов, с другой, могут приводить к одному и тому же эволюционному последствию: увеличению информационной стабильности генома. Поэтому размер генома современных эукариот эволюционно оптимизирован в отношении максимально допустимой частоты мутаций, совместимых с жизнеспособностью конкретных биологических видов. Сохранение видоспецифических соотношений между кодирующими и некодирующими последовательностями генома эукариот может быть следствием естественного отбора, отсекающего крайние варианты, у которых или слишком мало, или чрезмерный избыток некодирующих последовательностей.
Эволюционное увеличение размера генома понижает требования таких видов к точности функционирования систем репарации геномной ДНК. В результате снижение давления отбора на эти ферментативные системы могло
518
способствовать накоплению в них мутаций, уменьшающих точность функционирования таких систем. Следовательно, суммарный размер генома эукариотического организма отражает не только потребность организма в определенном количестве генетической информации для обеспечения соответствующего уровня сложности его биологической организации, но и особенности жизнедеятельности организма, связанные с интенсивностью экзогенных и эндогенных мутагенных воздействий.
Подводя итоги вышесказанному, необходимо еще раз отметить, что, по крайней мере, две особенности строения генома эукариот могут оказывать влияние на частоту мутаций, возникающих в нем в процессе репликации под действием экзогенных и эндогенных мутагенов. Во-первых, включение избыточных последовательностей нуклеотидов приводит к глобальной защите всех функционально значимых последовательностей генома от эндогенных и экзогенных мутагенов. Избыточные последовательности нуклеотидов генома эукариот весьма существенно стабилизируют геном, что, возможно, является необходимым и достаточным условием для эволюционного появления многоклеточности. Во-вторых, внутриядерная компартментализация последовательностей нуклеотидов геномной ДНК, при которой происходит специфическая упаковка нитей хроматина в индивидуальных компартментах, занимаемых хромомерами и более крупными блоками последовательностей нуклеотидов, должна также сопровождаться изменением частоты мутаций в конкретных генетических локусах пропорционально локальной внутриядерной концентрации ДНК и пространственному расположению отдельных генетических локусов друг относительно друга.
Эволюционно сложившиеся отношения между суммарными длинами экзонов и интронов в индивидуальных генах, а также уровни упаковки и пространственное расположение ДНК в отдельных генетических локусах могли бы указывать на тот максимально допустимый темп мутационных изменений экзонов, который совместим с жизнеспособностью организмов в онтогенезе. С другой стороны, эти соотношения были бы своеобразной генетической программой, предопределяющей и филогенетическое развитие видов. Действительно, селективная видоспецифическая защита отдельных генетических локусов от спонтанного и индуцированного мутагенеза должна сопровождаться преимущественным образованием мутаций в локусах,
519
наименее защищенных некодирующими последовательностями нуклеотидов, на фоне которых и разворачиваются основные события, связанные с естественным отбором. При этом уровни защищенности отдельных генетических локусов определяют различные темпы изменений этих локусов в филогенезе разных таксономических групп организмов. Частоты спонтанных мутаций в индивидуальных генах ограничиваются достаточно узкими рамками, определяемыми пространственной структурой как самих генов, так и более протяженных генетических локусов, включающих в себя некодирующие последовательности нуклеотидов. Такие ограничения могут быть преодолены при более мощных мутагенных воздействиях, однако соотношение частот мутаций, возникающих в разных частях генов, в основном, должно сохраняться, в том числе из-за разной доступности этих частей химическим мутагенам.
Все вышеперечисленные причины могут в конечном счете определять дискретный популяционный полиморфизм и направление изменчивости фенотипов индивидуальных биологических видов, наблюдаемые в природе. В этих терминах можно было бы объяснить закон гомологических рядов Н.И. Вавилова, в соответствии с которым у родственных видов, родов и даже семейств организмов наблюдаются сходные ряды фенотипической изменчивости. Действительно, данное явление вполне естественно объясняется общностью генотипов таких таксономических групп и общностью пространственной структуры их геномов, определяющей мутабильность отдельных генетических локусов и направление эволюционных преобразований этих генов и признаков. Такая генетически детерминированная изменчивость генотипов индивидуальных биологических видов и может дать гомологические ряды фенотипических признаков родственных организмов, которые формируются направленно изменяющимися генотипами. В то же время для образования признаков, выводящих организмы из их таксономических групп, требуются более радикальные преобразования генотипов, чем точковые мутации, которые бы открывали новые участки генома для интенсивного спонтанного мутагенеза. Направленная изменчивость генотипов, определяемая пространственной структурой и составом интерфазных хромосом, должна допускать в больших популяциях одновременное образование одних и тех же мутантных фенотипических признаков у большого числа особей и ускорять процесс видообразования.
520
Не исключено, что еще большее, чем интроны, отношение к генетической программе филогенетического развития имеют крупные блоки повторяющихся последовательностей индивидуальных хромосом, которые окружают и в разной степени защищают от мутационных изменений участки генома, наиболее важные для видообразования и сохранения вида как такового. Анализ и картирование этих блоков в геноме многоклеточных организмов могут способствовать выявлению новых функционально значимых участков генома и их экспериментальному исследованию. Не менее интересные результаты может принести и анализ интрон-экзонной структуры известных генов, а также фланкирующих генов избыточных последовательностей по уровню защищенности индивидуальных генов от мутаций. Такой анализ может поновому осветить генетическую значимость уже известных участков генома. С использованием аналогичного подхода могут быть выявлены новые жизненно важные гены, которые организм особенно бережно укрывает от мутаций избыточными последовательностями нуклеотидов.
Организовав геном эукариот таким изящным (но не безупречным) образом, природа сама указывает на его слабые места и возможные пути дальнейшего совершенствования. Уязвимость современного генома в отношении неблагоприятных экологических факторов (в первую очередь, антропогенных) может быть связана с тем, что в доисторические времена, когда происходила адаптивная эволюция организмов, экологическая обстановка была существенно благоприятнее. Крупные геномы гораздо более чувствительны как мишени для ионизирующих излучений, а этот фактор в те времена мог не иметь большого значения, и эволюционирующим организмам не нужно было к нему приспосабливаться. Уязвимость такого сложноорганизованного генома, как геном эукариот, заключается еще и в том, что его мутационные изменения, нарушающие пространственную организацию укладки ДНК в интерфазных ядрах, могут быть причиной возникновения мутаторного фенотипа мутантных соматических клеток. Этот фенотип, в свою очередь, может вызывать тяжелые патологические изменения организма, включая онкологические, аутоиммунные и другие тяжелые заболевания. С другой стороны, введение генно-инженерными методами генетически нейтральных последовательностей нуклеотидов, изменяющих доступность для мутагенов особенно важных генетических локусов генома, могло бы повысить
