
Экспрессия генов Патрушев
.pdf491
способным их акцептировать, в том числе и азотистым основаниям геномной ДНК. Кроме того, в первом приближении можно считать, что расположенные по соседству кодирующие и некодирующие последовательности нуклеотидов ДНК
вравной степени доступны действию на них внутриядерных мутагенов. В таких условиях вероятность образования аддуктов внутриядерных мутагенов с кодирующими последовательностями нуклеотидов геномной ДНК будет прямо пропорциональна их суммарной длине (доле) в геномной ДНК или обратно пропорциональна "разбавлению" этих последовательностей некодирующими последовательностями нуклеотидов. Такое разбавление могло бы произойти в результате эволюционных преобразований генома-предшественника путем включения в него некодирующих избыточных последовательностей при участии разных молекулярных механизмов.
Вовлечение систем репарации повреждений ДНК в поддержание генетической стабильности информационных макромолекул клетки является вынужденной мерой, указывающей на то, что действие всех остальных систем защиты не обеспечивает полной сохранности нативного состояния генома. Тем не менее, любая генетическая система будет функционировать надежнее в том случае, если наиболее важные в обеспечении жизнедеятельности генетические локусы будут дополнительно защищены от действия химических мутагенов. Действительно, с точки зрения защиты информации гораздо большего эффекта можно достичь путем создания дополнительных препятствий на пути генотоксических агентов к таким локусам, чем репарацией поврежденных генов, так как в последнем случае не всегда повреждение может быть исправлено и исходная первичная структура ДНК восстановлена. Как следует из дальнейшего изложения, любому, и особенно эукариотическому, геному свойственна дифференциальная защита индивидуальных генетических локусов с помощью очень простого механизма. Необходимость дополнительной защиты генетической информации особенно актуальна для многоклеточных организмов
всвязи с тем, что у них существует опасность накопления соматических мутаций во время онтогенетического развития, когда создаются гигантские клоны высококооперированных и специализированных соматических клеток.
5.3.1.Парадокс возможности существования многоклеточных организмов Огромный размер генома многоклеточных организмов с генетической

492
точки зрения должен создавать для их существования многочисленные и, на первый взгляд, трудноразрешимые препятствия. Проблемы начинаются уже при редупликации гигантских молекул геномной ДНК с помощью ферментных систем, точность функционирования которых не является абсолютной. Кроме того, репликация происходит в присутствии мутагенов экзогенного и эндогенного происхождения. Принято считать, что частота спонтанных мутаций в геноме соматических клеток млекопитающих, растущих в культуре, варьирует от локуса к локусу одного и того же генома и, по разным оценкам, достигает значений от 10-8 до 10-12 на нуклеотид за клеточную генерацию. Точное определение частоты спонтанных мутаций в геномной ДНК высших эукариот in vivo является сложной задачей. По ряду экспериментальных и косвенных данных, в частности, исходя из частоты встречаемости некоторых наследственных заболеваний в популяциях человека (например серповидноклеточной анемии, вызываемой заменой единственного нуклеотида в геномной ДНК), полагают, что эти показатели, по крайней мере, не ниже значений, полученных in vitro.
Рис. I.62. Происхождение генетического груза в геноме соматических клеток многоклеточных организмов
Развитие многоклеточного организма начинается с дробления зиготы, образующейся в процессе оплодотворения яйцеклетки и содержащей
493
диплоидный набор хромосом (две параллельные линии вверху рисунка). А–М – наборы мутаций
Принимая, что суммарная ДНК гаплоидного генома человека насчитывает 3·109 п.о., а частота спонтанных мутаций в среднем составляет
10-8 на нуклеотид за генерацию, можно предположить, что, начиная с первого деления оплодотворенной яйцеклетки в процессе онтогенетического развития организма человека, каждое следующее деление должно сопровождаться появлением в их геномной ДНК, по крайней мере, 30 независимых мутаций (рис. I.62). Организм человека состоит из 1015 клеток. Для образования стольких клеток из оплодотворенной яйцеклетки требуется 50 клеточных генераций. Следовательно, гаплоидный геном каждой из соматических клеток человека 50-й генерации должен содержать в разных частях, по крайней мере, 1500 мутаций. Если предположить далее, что набор из 30 мутаций возникает и закрепляется в каждом последующем клеточном делении независимо от мутаций, полученных во время предыдущих делений клеток, то получается, что любая дочерняя соматическая клетка наследует от клетки-предшественницы все имеющиеся в ее геноме мутации и приобретает блок новых 30 мутаций. При этом набор соматических мутаций в потомстве каждой из делящихся клеток одного поколения будет отличаться один от другого, в том числе и в парах аллельных локусов ДНК отдельных клеток, поскольку они редуплицируются независимо. При таком развитии событий мутации, возникающие в геноме соматических клеток каждой последующей генерации, случайным образом сканируют шаг за шагом всю реплицирующуюся геномную ДНК, а результаты сканирования не повторяются в каждом новом поколении клеток. Так, блок из 30 спонтанных мутаций, возникающих после гипотетической 50-й генерации соматических клеток в онтогенезе многоклеточного организма, должен присутствовать в 1015 (250) вариантах.
Проблема становится еще более очевидной, если иметь в виду, что многие клетки организма, например эпителиальные или стволовые клетки крови, пролиферируют на протяжении всей жизни многоклеточного организма, совершая громадное число клеточных делений. По некоторым оценкам, общее число клеточных циклов, в которых участвуют клетки человека на протяжении его жизни, приближается к 1016. Кроме того, соматические мутации возникают в

494
многоклеточном организме не только в активно пролиферирующих, но и покоящихся клетках. Частоты возникновения спонтанных мутаций в пролиферирующих и в покоящихся клетках млекопитающих в ряде случаев различаются лишь незначительно.
Парадоксальность эволюционно сложившейся генетической ситуации заключается в том, что если бы большая часть последовательностей нуклеотидов геномной ДНК заключала в себе жизненно важную генетическую информацию, существование многоклеточных организмов было бы невозможно. Их гибель происходила бы из-за неизбежного накопления в делящихся соматических клетках вредных или летальных мутаций, приводящих к обрыву линий дифференцирующихся в онтогенезе соматических клеток. Это особенно относится к мутациям в жизненно важных генах половых хромосом, которые в соматических клетках находятся в гемизиготном состоянии. Альтернативно основные генетические локусы многоклеточных организмов могут находиться под дополнительной защитой от мутационных изменений.2
На основании приведенных выше аргументов можно сделать вывод о том, что большая часть некодирующих избыточных последовательностей нуклеотидов геномной ДНК эукариот не заключает в себе жизненно важной генетической информации и/или у эукариотических клеток имеются механизмы, обеспечивающие дополнительную защиту геномной ДНК от мутаций. Не соглашаясь с основными положениями концепции "эгоистической" и "паразитической" ДНК, можно предположить, что именно такая организация генома эукариотических организмов, в корне отличающаяся от структуры генома прокариот, имеет отношение к разрешению проблемы генетической
3 Нарисованная выше картина, как и рис I.62, являются упрощенной схемой, в которой, в частности не учитывается рецессивный характер большинства возникающих мутаций. Однако наличие генетического груза в популяциях многоклеточных организмов, а также гемизиготное состояние части генов, ассоциированных с половыми хромосомами, повышают вероятность полного функционального выключения аллелей под действием соматических мутаций, возникающих в онтогенезе диплоидных организмов. Дублирование генетической информации (тотипотентность соматических клеток), позволяющее производить замещение поврежденных клеточных линий в онтогенезе, и другие защитные механизмы, которые будут обсуждаться ниже, снижают остроту проблемы соматических мутаций в онтогенезе многоклеточных организмов, но не снимают ее полностью. Такой проблемы не возникает у прокариот из-за отсутствия у них сомы, а следовательно, и

495
парадоксальности существования многоклеточных организмов, которую можно назвать парадоксом М (Metazoa, Metaphyta). Создается впечатление, что именно избыточная ДНК генома эукариот может иметь отношение к повышению его информационной стабильности до уровня, необходимого для реализации многоклеточности в природе.
5.3.2. Повышение информационной стабильности генома избыточными последовательностями
Анализ структуры генома современных эукариот показывает, что эволюционные преобразования генома-предшественника, приведшие к включению в него избыточных последовательностей нуклеотидов, сопровождались важными генетическими изменениями в отношении стабилизации генетической информации. В частности, многократное превышение содержания избыточных последовательностей нуклеотидов над кодирующими неизбежно должно приводить к соответствующему уменьшению вероятности возникновения мутаций в кодирующих и других функционально значимых частях под действием внутриядерных мутагенов эндогенного и экзогенного происхождения. Поскольку в разных частях интерфазного ядра (микрокомпартментах, заключающих в себе хромомеры интерфазных хромосом) наблюдается гетерогенность в уровнях конденсации хроматина, индивидуальные локусы могут быть по-разному защищены от мутационных изменений, вызываемых мутагенами. Рассмотрим более подробно влияние избыточных последовательностей ДНК генома эукариот на стабильность их генома.
необходимости кооперации свободноживущих клеток.

496
Рис. I.63. Гипотетическое эволюционное преобразование геномапредшественника путем включения в него некодирующих избыточных последовательностей нуклеотидов
Влияние избыточных последовательностей нуклеотидов на число мутаций, возникающих в результате ошибок репликации в кодирующих последовательностях генома. Предположим, что длина исходного генома, не содержащего избыточных последовательностей нуклеотидов, составляет N п.о. (см. рис. I.63). При этом в результате ошибок репликации в нем, в среднем, возникает a мутаций независимо одна от другой и случайным образом. Допустим, что в ходе эволюционных преобразований в него включаются избыточные последовательности нуклеотидов, суммарная длина которых составляет nN п.о. и, соответственно, общая длина преобразованного генома становится равной (n+1)N п.о. Поскольку число мутаций, возникающих в результате ошибок репликации, прямо пропорционально длине реплицирующейся ДНК, общее количество мутаций, в среднем, возникающих в преобразованном геноме при участии этого механизма, должно возрасти в n+1 раз и составить a(n+1). Вероятность возникновения одной независимой и случайной мутации в некодирующей части генома P(1) будет пропорциональна его длине:
497
P(1) = |
nN |
|
= |
n |
|
. (1) |
|
(n +1)N |
|
n +1 |
|||||
|
|
|
|
||||
В то же время вероятность возникновения в избыточных частях генома |
|||||||
всех a(n+1) мутаций будет равна: |
|
|
|
|
|
|
|
|
|
|
n |
a(n+1) |
|||
P[a(n+1)] = |
|
|
|
|
(2), |
||
|
+1 |
||||||
|
n |
|
|
поскольку вероятность одновременного наступления a(n+1) независимых событий равна произведению вероятностей наступления каждого из них в отдельности. При a = 1 (т.е. в том случае, если в процессе репликации исходного генома в нем, в среднем, возникала одна мутация) и достаточно больших значениях n это выражение стремится к e-1, т.е. к 0,36. Таким образом, в данном случае при n = 100 (что, приблизительно, соответствует соотношению некодирующих и кодирующих последовательностей нуклеотидов в геноме человека и других млекопитающих) вероятность того, что ни одна из мутаций, возникающих в гипотетическом преобразованном геноме в результате ошибок репликации, не произойдет в его кодирующих частях, будет довольно высокой и составит 0,37. Это означает, что, в среднем, каждая третья дочерняя соматическая или половая клетка, возникшая в результате редупликации гипотетического генома с достаточным количеством некодирующих избыточных последовательностей нуклеотидов, будет полностью свободна от мутаций, образующихся по такому механизму в кодирующих частях своего генома.
С |
увеличением |
числа мутаций в исходном геноме-предшественнике |
(a >> 1) |
вероятность |
возникновения всех мутаций в некодирующих частях |
генома быстро уменьшается. Однако поскольку эти мутации будут распределяться между кодирующими и некодирующими частями генома пропорционально длине каждой из этих частей, общее их количество в кодирующих частях генома останется неизменным. Следовательно, эволюционное включение в геном-предшественник большого количества некодирующих последовательностей нуклеотидов не увеличивает число мутаций, возникающих в кодирующих частях генома в результате ошибок репликации. Более того, в ряде случаев такое эволюционное преобразование

498
генома может заметно стабилизировать его генетическую информацию.
Влияние избыточных последовательностей нуклеотидов на число мутаций, возникающих в кодирующих частях генома под действием мутагенов. Ситуация, связанная с возникновением мутаций в гипотетическом геноме под действием мутагенов экзогенного и эндогенного происхождения, принципиально отличается от только что рассмотренной (см. рис. I.63). Если предположить, что эволюционное преобразование генома, приведшее к включению в него n некодирующих последовательностей нуклеотидов, не сопровождается увеличением числа внутриядерных мутагенов, то генетические последствия такого преобразования будут гораздо более значительными.
Так же как и в предыдущем случае, вероятность попадания одного мутагена Mk в некодирующую область гипотетического генома равна n n+1 .
Вероятность же того, что все k мутагенов попадут в некодирующие области нового генома P(k), равна:
|
|
n |
k |
||
P(k) = |
|
|
|
|
(3). |
|
|
||||
|
n +1 |
|
|
При больших значениях n и малых k величина P(k) стремится к 1,0, т.е. имеет место событие, близкое к достоверному. Иными словами, чем больше доля некодирующих последовательностей нуклеотидов в геномной ДНК, тем вероятнее, что все внутриядерные мутагены попадут в некодирующие последовательности. В случае гипотетического генома с n = 100 вероятность попадания одного мутагена в кодирующую область становится равной 0,01, т.е. весьма малой. При этом общее число мутагенов, которые будут взаимодействовать с кодирующими последовательностями нуклеотидов, уменьшится в 100 раз и будет иметь место 100-кратная защита кодирующих функционально значимых участков эволюционно преобразованного генома от мутаций, вызываемых внутриядерными мутагенами, по сравнению с исходным геномом-предшественником. При k = n+1 с ростом n уравнение (3) будет стремиться к e-1, т.е. к ~0,36, и быстро уменьшаться при дальнейшем увеличении k. Но это относится к вероятности полной защиты кодирующих последовательностей нуклеотидов. Относительная же защита, равная доле химических мутагенов из всего их пула, взаимодействующих с кодирующими
499
последовательностями нуклеотидов, будет обратно пропорциональна общей длине избыточных последовательностей в преобразованном геноме, т.е. обратно пропорциональна n. Относительная защита генома от химических мутагенов может быть особенно актуальной в условиях экологического стресса.
Насколько соответствует действительности предположение о том, что эволюционное преобразование генома-предшественника путем включения в него большого количества избыточных последовательностей нуклеотидов не будет сопровождаться пропорциональным возрастанием количества внутриядерных мутагенов? Очевидно, что такое предположение является упрощением. Увеличение внутриядерного содержания ДНК, например в результате эндорепликации при политении, по-видимому, всегда приводит к пропорциональному увеличению объема соответствующих ядер, следствием чего, казалось бы, должно быть пропорциональное возрастание количества молекул внутриядерных мутагенов. Однако это не совсем так. Данный вывод относится лишь к мутагенам, непосредственно образующимся в ядре, например в результате взаимодействия ионизирующего излучения с веществом ядер. Большая же часть мутагенов, по-видимому, должна поступать в ядра из цитоплазмы путем радиальной диффузии через ядерные мембраны. При этом одним из факторов, ограничивающих попадание мутагенов из цитоплазмы в ядра, является их поверхность, поскольку вероятность контакта мутагенов цитоплазмы с ядром прямо пропорциональна площади его поверхности. При увеличении объема поверхность ядра-шара возрастает пропорционально квадрату его радиуса, тогда как объем – пропорционально кубу радиуса ядра. Следовательно, объем ядер будет увеличиваться быстрее площади их поверхности и количество молекул внутриядерных химических мутагенов, приходящихся на нуклеотид ядерной ДНК, должен уменьшаться при возрастании ядерного объема за счет увеличения содержания ядерной ДНК. Такое эволюционное преобразование генома в целом будет сопровождаться повышением его информационной стабильности.
Включение в геномную ДНК некодирующих последовательностей может приводить и к более специфической защите жизненно важных локусов генома от химических мутагенов. В частности, глобальная защита кодирующих последовательностей от химических мутагенов, поступающих из цитоплазмы в ядро путем радиальной диффузии, могла бы происходить в том случае, если
500
бы некодирующие последовательности были преимущественно локализованы вблизи поверхности ядер и экранировали последовательности, расположенные ближе к их центральной части. В настоящее время имеются многочисленные экспериментальные данные, указывающие на высокоупорядоченное расположение последовательностей нуклеотидов ДНК в интерфазных ядрах. Значение пространственного расположения отдельных последовательностей ДНК интерфазных хромосом для избирательной, специфической защиты кодирующих последовательностей будет подробнее рассмотрено ниже.
5.3.3. Селективная защита генов от мутаций
Во всех предыдущих рассуждениях речь шла о глобальной защите функционально значимых участков гипотетического генома от спонтанных и индуцируемых мутаций некодирующими последовательностями нуклеотидов. При этом для простоты рассуждений предполагалось, что распределение нуклеотидов геномной ДНК и самих мутагенов в интерфазном ядре гомогенно. В реальном геноме эукариот распределение последовательностей нуклеотидов геномной ДНК в интерфазном ядре далеко не однородно. Достаточно вспомнить, что геном эукариот всегда представлен несколькими хромосомами (в частности диплоидный геном человека заключен в 46 хромосомах), ДНК каждой пары из которых обладает уникальными первичной и пространственной структурами. ДНК индивидуальных хромосом в интерфазном ядре компартментализована, а плотность упаковки ДНК в различных участках индивидуальных интерфазных хромосом неравномерна.
В этом отношении наиболее изучена и показательна хромомерная организация гигантских политенных хромосом, образующихся в клетках некоторых типов животных и растений. Для таких хромосом в интерфазном ядре характерны различные уровни компактизации хроматина вдоль хроматид, что морфологически проявляется в формировании визуально обнаруживаемых, поперечно расположенных дисков и междисков. В этих хромосомах выделяют три уровня компактизации ДНК. Дискам (неактивным районам политенных хромосом) свойственен максимальный 100–380-кратный уровень компактизации хроматина по отношению к свободной ДНК. С началом транскрипции, т.е. при переходе участков интерфазных хромосом в активное состояние, уровень компактизации понижается до ~40-кратного, и ДНК