Экспрессия генов Патрушев
.pdf461
и спонтанными событиями, а образующиеся мутантные признаки подвержены жесткому давлению естественного отбора. В популяциях закрепляются лишь мутации (и признаки), максимально соответствующие условиям окружающей среды. Остальные элиминируются в результате гибели мутантных особей.
Считается, что спор между неоламаркистами и неодарвинистами окончательно решен в пользу последних, по крайней мере, тремя классическими экспериментами. Во флуктуационном тесте (С. Лурия, М. Дельбрюк, 1943 г.) исследовали возникновение мутантов E. coli, устойчивых к бактериофагу Т1 в независимо выращиваемых культурах бактерий. Бактериальные клетки из разных пробирок высевали на чашки Петри с избытком фага Т1 и подсчитывали число образующихся бактериальных колоний, устойчивых к бактериофагу. Предполагалось, что если мутантные бактерии образуются в пробирках до вступления в контакт с бактериофагом, то количество устойчивых бактерий будет сильно различаться в разных пробирках в зависимости от числа делений, которые совершит мутантная бактерия с момента возникновения мутации до высева на чашку Петри. В том случае, когда мутации возникают после взаимодействия бактерий с вирусом, количество мутантных бактерий, обнаруживаемых на разных чашках, будут следовать непрерывному распределению Пуассона. В ходе этих экспериментов продемонстрировано предсуществование мутантных бактерий в культурах. В еще более наглядных опытах Дж. Ледерберга и Е.М. Ледерберг (1950 г.) с помощью бархатного штампа перепечатывали бактерии с газона на разные чашки Петри, содержащие бактериофаг Т1. Оказалось, что мутантные бактерии, устойчивые к бактериофагу, образуют колонии в одних и тех же местах разных чашек. Эти данные были также в пользу предсуществования мутантных бактерий в газоне, не имевшем контакта с бактериофагом. Однако в своих первых опытах исследователи имели дело с потомками исходных бактериальных клеток, которые контактировали с селектирующим агентом (бактериофагом Т1) в момент отбора. Поэтому "окончательное" решение вопроса было достигнуто после получения в 1956 г. штаммов бактерий, устойчивых к стрептомицину и ранее не соприкасавшихся с антибиотиком.
Потрясение твердо устоявшихся основ молекулярной генетики с неоламаркистских позиций началось в 1988 г. после опубликования в журнале "Nature" статьи Дж. Кэрнса, Дж. Овербаха и С. Миллера "Происхождение
462
мутантов". В серии экспериментов с мутантными клетками E. coli, неспособными использовать лактозу в качестве источника углерода (фенотип Lac-), авторы установили, что скорость образования ревертантов в том случае, если мутантные бактерии инкубировали на чашках в присутствии лактозы, значительно превышала ожидаемую из случайного возникновения обратных мутаций в стационарной бактериальной культуре. На этом основании авторы сделали вывод о том, что селективные условия (присутствие неусваиваемой лактозы в качестве единственного источника углерода) оказывают влияние на спектр мутаций, возникающих у бактериальных клеток. В работе утверждается, что бактериальные клетки могут сами контролировать свой мутационный процесс, направляя его в сторону образования нужных мутантных ферментов, что позволяет клеткам адекватно реагировать на сигналы окружающей среды, которая направленно формирует генотип бактериальных клеток.
Такие "еретические" выводы Кэрнса и его соавторов получили экспериментальное подтверждение в его дальнейших исследованиях, а также в многочисленных работах других авторов с использованием бактериальных и дрожжевых клеток в качестве объекта. И хотя в ряде случаев было показано наличие артефактов, приводивших к неправильной интерпретации результатов, в целом существование феномена направленного образования адаптивных мутаций подтверждено и пока не опровергнуто. Однако он может занять достойное место среди других хорошо доказанных генетических явлений лишь после экспериментального выяснения молекулярных механизмов, лежащих в основе адаптивных мутаций.
Для объяснения этих фактов в настоящее время выдвинуто несколько гипотез, ни одна из которых пока не получила полного экспериментального подтверждения. По мнению Кэрнса и соавторов (1988 г.) клетки синтезируют набор вариабельных, незначительно различающихся по первичной структуре молекул мРНК, и путем обратной транскрипции получают копию кДНК с одной из них, кодирующей наиболее подходящую для адаптации белковую молекулу. Далее такая кДНК в результате рекомбинации замещает мутантный аллель в геноме микроорганизма. Б.Д. Дэвис (1989 г.) считает, что индукция транскрипции отдельных локусов в геноме покоящихся микроорганизмов, в частности лактозой, повышает их мутабильность. Ф.У. Сталь (1988 г.) и Л. Боэ (1990 г.) высказывают предположение о снижении функционирования систем
463
репарации ДНК у голодающих микроорганизмов, что может быть причиной повышения частоты мутаций в транскрибируемых локусах. Те же авторы предполагают, что в основе феномена направленного повышения частоты мутаций лежит recA-зависимая амплификация соответствующих генетических локусов, сопровождаемая корректирующим мутагенезом. Б.Г. Холл (1990 г.) для объяснения адаптивных мутаций разработал модель, в соответствии с которой в популяции голодающих микроорганизмов часть клеток находится в состоянии повышенной мутабильности. Среди этих клеток выживают лишь мутанты, максимально соответствующие требованиям окружающей среды.
По крайней мере, два результата исследований последних лет делают концепцию Холла наиболее приемлемой. Прежде всего было установлено, что реверсия мутантных бактериальных клеток к фенотипу Lac+ в условиях голодания требует функционирования RecBCD-зависимой репарационной системы рекомбинации (см. раздел 5.2.3). Кроме того, в бактериальном геноме были обнаружены горячие и холодные точки, в которых образование адаптивных мутаций может происходить соответственно с высокой и низкой частотой, что объясняет отмеченную в литературе невозможность их обнаружения в некоторых генетических локусах. Поскольку на первых этапах работы репарационной системы рекомбинации происходит внесение в ДНК двухцепочечных разрывов, с которыми далее взаимодействует комплекс белков RecBCD, полагают, что такие разрывы ДНК инициируют процесс возникновения адаптивных мутаций.
Во время рекомбинационного обмена цепями ДНК, индуцированного двухцепочечными разрывами, происходит синтез новых цепей ДНКполимеразой III, сопровождаемый ошибочным включением нуклеотидов. (Как уже упоминалось в разделе 5.1.2, ДНК-полимераза III является активным участником SOS-мутагенеза у бактерий.) Такие ошибочно включенные нуклеотиды с высокой вероятностью могут закрепляться в геноме в виде мутаций из-за ослабления эффективности функционирования системы эксцизионной репарации у бактериальных клеток, находящихся в стационарной фазе роста, и, следовательно, формирования у голодающих бактериальных клеток мутаторного фенотипа. При случайном возникновении мутации, возвращающей клетку к нормальному Lac+-фенотипу, мутантная бактерия выходит из стационарной фазы и начинает активно делиться. При этом
464
происходит восстановление обычного функционирования системы репарации. Как можно видеть, обсуждаемая модель не оставляет места классическому неоламаркизму. При реализации такого механизма возникновение "адаптивной" мутации определяет случай, и после ее появления происходит клональное замещение исходной популяции бактерий мутантными клетками. Однако выбор самих генетических локусов, в которых могут происходить такие мутации, уже не является случайным. Он генетически детерминирован, на мой взгляд, структурой бактериального генома. В соответствии с развиваемой в разделе 5.3 концепцией альтруистичной ДНК, адаптивные мутации являются в конечном итоге естественным следствием дифференциальной защиты отдельных генетических локусов от спонтанных мутаций, определяемой пространственной структурой ДНК локусов. Как будет следовать из дальнейшего изложения, частота мутаций в первом приближении обратно пропорциональна уровню конденсации ДНК конкретного генетического локуса и определяется физической доступностью отдельных его частей химическим мутагенам и(или) ферментам системы репарации. Кроме того, индукция транскрипции этих предетерминированных локусов или даже простое удаление регуляторных белков из промоторной зоны генов могли бы изменять их пространственную структуру и, как следствие, уровень мутабильности
соответствующих участков генома.
5.1.6. Механизмы защиты генома от мутаций
Несмотря на то что иногда мутации помогают организму выжить, подавляющее большинство мутационных изменений генома нежелательно и сопровождается развитием различных патологических состояний мутантной особи или отдельной соматической клетки. Жестко действующий естественный отбор, в частности, через систему иммунного надзора элиминирует мутантные соматические клетки, опасные для существования многоклеточного организма, например предотвращая иногда развитие онкологических или аутоиммунных заболеваний. Однако к гораздо более плачевным последствиям приводит элиминация естественным отбором целой мутантной особи, так как это сопровождается непродуктивной гибелью большого числа соматических клеток и является расточительным с точки зрения энергетических затрат на их биосинтез. Генетическая информация любого организма тщательно защищена
465
от мутационных повреждений, что делает мутации в жизненно важных локусах генома очень редкими. Защита осуществляется на нескольких уровнях. Прежде всего, организм старается не допустить попадания химических мутагенов в жизненно важные локусы своего генома. Это достигается двумя путями. Вопервых, избыточные последовательности нуклеотидов ДНК, экранируя кодирующие последовательности нуклеотидов в геноме эукариот, принимают удар большей части химических мутагенов на себя, не допуская их попадания в такие локусы. Те же цели могут быть достигнуты за счет особой пространственной организации ДНК в конкретных участках генома (подробнее см. раздел 5.3). Во-вторых, в клетках имеются многочисленные высоко- и низкомолекулярные ловушки мутагенов, важнейшими из которых являются: маннит, энкефалины, индолы, желчные кислоты и их производные, α- токоферол, аскорбиновая кислота, тирозин, серотонин, а также ряд других соединений экзогенного и эндогенного происхождения.
К сожалению, обе системы защиты не обладают 100%-й эффективностью. То же можно сказать и о точности функционирования ферментных систем, осуществляющих воспроизведение генетической информации. Поэтому многочисленные нарушения первичной структуры ДНК неизбежны. Тем не менее, большинство первичных повреждений не превращается в мутации благодаря функционированию высокоэффективных систем репарации ДНК, состоящих из многих ферментных компонентов. Из-за исключительной важности функционирования систем защиты генетической информации в поддержании эффективной экспрессии генов ниже будут рассмотрены основные компоненты систем репарации ДНК и принципы их работы.
5.2. Репарация ДНК
Большая группа молекулярно-генетических явлений, известная в настоящее время под общим названием "репарация повреждений ДНК", была осознана как отдельный и очень важный биологический феномен лишь в конце 1950-х годов. По мнению Ф. Сталя такая задержка в развитии этого направления исследований была связана с широко распространенным мнением о том, что гены, как чрезвычайно тонко и точно организованные
466
биологические структуры, должны быть хорошо защищены от самой возможности биохимических повреждений, например путем упаковки в высокоэффективную защитную оболочку. В то время невозможно было представить себе ген в виде нестабильной макромолекулы, структура которой динамически изменяется на протяжении жизненного цикла организма, непрерывно отклоняясь от своего начального состояния и возвращаясь к исходной структуре в результате координированного функционирования большого числа ферментных систем.
5.2.1. Основные механизмы репарации поврежденной ДНК
Рис. I.56. Участок ДНК с основными повреждениями, вызываемыми УФ-светом
а – тиминовый димер циклобутанового типа; б – пиримидиновый димер, соединенный 6–4 связью.
С – цитозин; Т – тимин
Как уже упоминалось выше, имеются два типа нарушений структуры ДНК, которые в конечном итоге приводят к мутациям. Это, во-первых, включение
467
нормальных нуклеотидов в аномальное окружение из последовательностей нуклеотидов, приводящих к образованию неправильно спаренных оснований и петель разных размеров. Во-вторых, появление повреждений ДНК в виде аномальных нуклеотидов в правильных последовательностях ДНК. В этом случае речь идет о различных химических модификациях нуклеотидов, включая их разрушение и образование поперечных сшивок. Помимо того, что повреждения ДНК часто являются причиной мутаций, они еще могут приводить к задержке и полному блокированию репликации и транскрипции.
При исследовании механизмов репарации ДНК первые важные результаты были получены на клетках, облученных УФ-светом с длинами волн 240–280 нм. УФ-облучение клеток часто сопровождается их гибелью, образованием мутаций и злокачественной трансформацией, что вызвано в первую очередь повреждениями их ДНК. Среди первичных повреждений такого рода наиболее часто встречаются биспиримидиновые фотопродукты: пиримидиновые димеры циклобутанового типа, соединенные связью 6–4 (рис. I.56). Как про-, так и эукариоты имеют несколько ферментных систем, которые разделяют пиримидиновые димеры или восстанавливают исходную структуру азотистых оснований. К таким репаративным системам относится,
прежде всего, система эксцизионной репарации ДНК, осуществляющая вырезание поврежденных нуклеотидов (nucleotide excision repair – NER) или азотистых оснований (base excision repair – BER). Система ферментативной фотореактивации ДНК (photoreactivation – PHR), основным компонентом которой является ДНК-фотолиаза, разделяет пиримидиновые димеры, превращая их в нормальные пиримидиновые основания. Кроме того, поврежденные УФ-светом молекулы ДНК могут репарироваться с участием систем рекомбинации и в процессе пострепликативного синтеза ДНК. Действие многих вышеперечисленных систем репарации поврежденной ДНК распространяется не только на фотопродукты, но и на другие модифицированные основания, образующиеся под действием химических мутагенов. Отдельно следует упомянуть систему, распознающую неправильно спаренные основания в двойной спирали ДНК, возникающие в результате ошибок репликации.
Большинство исследованных организмов обладают системами репарации ДНК в различных комбинациях. Так, клетки E. coli для удаления
468
фотопродуктов используют системы NER и PHR, тогда как у человека пиримидиновые димеры циклобутанового типа удаляются исключительно системой NER. Системы эксцизионной репарации NER и BER благодаря своей универсальной полифункциональности занимают центральное место среди систем репарации ДНК.
5.2.2. Эксцизионная репарация в клетках животных
Эксцизионная репарация ДНК путем удаления поврежденных азотистых оснований (BER). Система BER вызывает защиту геномной ДНК от повреждений, вызываемых главным образом алкилирующими агентами, а также эндогенными генотоксическими соединениями, включая внутриклеточные радикалы кислорода и другие реакционноспособные метаболиты, часть из которых уже обсуждалась в начале этой главы. BER начинает функционировать с отщепления ошибочно включенных или модифицированных оснований от дезоксирибозы под действием ключевого фермента – ДНК-гликозилазы, обладающего способностью отщеплять большое число модифицированных оснований ДНК (рис. I.57). Кроме этих модифицированных оснований в процессе BER может происходить удаление и других производных, образующихся под действием химических мутагенов. В частности, недавно было показано, что по такому же механизму происходит вырезание этонопуриновых производных оснований, образующихся под действием винилхлорида, а также С8-аддуктов аминофлуорена с остатками гуанина. Разные ДНК-гликозилазы благодаря их различной субстратной специфичности осуществляют удаление конкретных модифицированных оснований (табл. I.20).
469
Таблица I.20
ДНК-гликозилазы и эндонуклеазы клеток микроорганизмов и человека, участвующие в BER
Фермент |
Источник |
Ген |
Субстрат (см. |
|
|
|
рис. I.57) |
|
|
|
|
Урацил-ДНК-гликозилаза |
E. coli |
ung |
а |
|
S. cerevisiae |
UNG |
» |
|
Человек |
UDG |
» |
3-Метиладенин-ДНК-гликозилаза |
E. coli |
tag |
к |
|
» |
alkA |
з, к–м, (б, и) |
|
S. cerevisiae |
MAG |
б, к, л |
|
Человек |
MPG |
к, (д) |
Fapy/8-оксогуанин-ДНК- |
E. coli |
fpg/mutM |
в–д |
гликозилаза |
S. cerevisiae |
? |
г и/или д |
(fapy – формамидопиримидин) |
Человек |
? |
» |
Эндонуклеаза III/тимингликоль- |
E. coli |
nth |
в, е, ж |
ДНК-гликозилаза |
|
|
|
Эндонуклеаза VIII |
E. coli |
nei |
» |
A-G-ДНК-гликозилаза |
» |
mutY |
Аденин/в |
|
Человек |
? |
» |
G-T-ДНК-гликозилаза |
» |
? |
G-T, (U-G) |
УФ-эндонуклеаза |
T4 |
? |
Пиримидиновые |
|
|
|
димеры |
|
M. luteus |
? |
То же |
Гидроксиметилурацил-ДНК- |
Человек |
? |
з |
гликозилаза |
|
|
|
Формилурацил-ДНК-гликозилаза |
» |
? |
Ж |
Примечание. В скобках приведены предположительные субстраты.
470
Рис. I.57. Модифицированные азотистые основания ДНК, удаляемые ДНК–гликозилазами при функционировании BER
а – урацил; б – гипоксантин; в – 5–гидроксицитозин; г – 2,5-диамино-4- формамидопиримидин; д – 7,8-дигидро-8-оксогуанин; е – мочевина; ж – тимингликоль; з – 5-формилурацил; и – 5-гидроксиметилурацил; к – 3- метиладенин; л – 7-метилгуанин; м – 2-метилцитозин
АР-дезоксирибоза (apurinic/apyrimidinic deoxyribose), образовавшаяся в результате удаления модифицированного азотистого основания апуринового/апиримидинового (AP-) сайта, далее вырезается с помощью АРлиазы, которая освобождает ее 3’-конец, и АР-эндонуклеазы, гидролизующей ее 5’-концевую фосфодиэфирную связь в АР-сайте (см. рис. I.58).
