
- •Гипотеза м. Планка (1900 г.)
- •Квантовая теория света Эйнштейна (1905 г.)
- •Интерференция света. Условия получения интерференционной картины. Условия максимума и минимума при интерференции
- •37. Когерентность. Интерференция в тонких пленках.
- •Кольца Ньютона
- •Когерентность и монохроматичность световых волн
- •Когерентностью называется согласованное протекание во времени и пространстве нескольких колебательных или волновых процессов.
- •Условие временной когерентности:
- •Условие пространственной когерентности:
- •Интерференция в тонких пленках. Кольца Ньютона
- •Условие максимума
- •Условие минимума
- •38. Дифракция света. Принцип Гюйгенса-Френеля. Метод зон Френеля. Дифракция Френеля на простейших преградах. Явление дифракции света. Принцип Гюйгенса-Френеля
- •Метод зон Френеля
- •Дифракция Френеля на простейших преградах
- •39. Дифракция Фраунгофера. Дифракционная решетка, ее разрешающая способность Дифракция Фраунгофера на одной щели
- •Дифракционная решетка, ее разрешающая способность
- •Пространственная решетка. Рассеяние света
- •41. Поляризация света при отражении и преломлении. Закон Брюстера.
- •42. Тепловое излучение, его характеристики. Абсолютно черное тело
- •Характеристики теплового излучения
- •43. Распределение энергии в спектре излучения абсолютно черного тела. Законы Кирхгофа, Стефана-Больцмана, Вина
- •2. Закон Стефана-Больцмана
- •Квантовая гипотеза м. Планка (1900 г.)
- •Тепловые источники света
- •44. Фотоэффект. Законы фотоэффекта
- •Уравнение Эйнштейна для внешнего фотоэффекта
- •Применение фотоэффекта
- •45. Развитие представлений о строении атома. Модели Томсона и Резерфорда. Спектры излучения и поглощения в атомах водорода
- •Спектры излучения и поглощения в атомах водорода
- •46. Постулаты Бора. Квантование орбит. Боровская теория атома водорода
- •Спектр атома водорода по Бору
- •47. Характеристики атомного ядра. Атомная единица массы. Изотопы. Состав атомного ядра Размер, состав и заряд атомного ядра. Массовое и зарядовое числа
- •Характеристики ядра
- •48. Устойчивость атомных ядер. Энергия связи. Деление тяжелых ядер и синтез легких. Термоядерная энергия.
- •Цепная реакция деления
- •Реакции синтеза (термоядерные реакции)
- •Понятие о ядерной энергетике
- •49. Радиоактивность. Закон радиоактивного распада
- •Виды радиоактивного излучения
- •Закон радиоактивного распада
- •1Бк активность нуклида, при которой за 1 с происходит один акт распада.
- •Закономерности , и распадов
- •Дозы излучений
Спектр атома водорода по Бору
Постулаты Бора позволили рассчитать спектр атома водорода состоящего из ядра с зарядом Ze и одного электрона
.
(6)
.
Полная энергия электрона в водородоподобной системе принимает дискретные значения:
,
n
=1,
2, 3,…
(7)
n главные квантовые числа;
n = 1 основное (нормальное) состояние;
n >1 возбужденные состояния.
Е(n=)=Emax=0 состояние соответствует ионизации атома (отрыву от него электрона).
47. Характеристики атомного ядра. Атомная единица массы. Изотопы. Состав атомного ядра Размер, состав и заряд атомного ядра. Массовое и зарядовое числа
Атомные ядра, открытые Э. Резерфордом в 1911 г., также как и сами атомы, имеют сложную структуру. В этом их убеждали многочисленные экспериментальные факты, накопленные к этому времени: открытие радиоактивности, экспериментальное доказательство ядерной модели ядра, измерение отношения e / m для электрона, α-частицы, открытие искусственной радиоактивности и ядерных реакций, измерение зарядов атомных ядер и т. д.
В настоящее время твердо установлено, что атомные ядра различных элементов состоят из двух частиц (нуклонов) – протонов и нейтронов.
Первая из этих частиц представляет собой атом водорода, из которого удален единственный электрон. Эта частица наблюдалась уже в опытах Дж. Томсона (1907 г.), которому удалось измерить у нее отношение e / m. В 1919 году Э. Резерфорд обнаружил ядра атома водорода в продуктах расщепления ядер атомов многих элементов. Резерфорд назвал эту частицу протоном. Он высказал предположение, что протоны входят в состав всех атомных ядер.
|
Рис.1. Схема опытов Резерфорда по обнаружению протонов в продуктах расщепления ядер. К – свинцовый контейнер с радиоактивным источником α–частиц, Ф – металлическая фольга, Э – экран, покрытый сульфидом цинка, М – микроскоп. |
Положительный заряд протона в точности равен элементарному заряду e = 1,60217733·10–19 Кл.
Масса протона mp = 1,67262·10–27 кг; В ядерной физике массу частицы часто выражают в атомных единицах массы (а. е. м.): mp = 1,007276 · а. е. м. (1 а. е. м. = 1,66057·10–27 кг = 1/12 массы атома углерода). Массу частицы удобно выражать в эквивалентных значениях энергии в соответствии с формулой E = mc2. Так как 1 эВ = 1,60218·10–19 Дж, в энергетических единицах масса протона равна 938,272331 МэВ.
Через 12 лет в 1932 г. Чедвик экспериментально исследовал излучение, возникающее при облучении бериллия α-частицами, и обнаружил, что это излучение представляет собой поток нейтральных частиц (нейтронов) с массой, примерно равной массе протона.
|
Рис. 2. Схема установки для обнаружения нейтронов |
Заряд нейтрона равен нулю.
Масса нейтрона mn = 1,67493·10–27 кг = 1,008665 а. е. м. = 939,56563 МэВ. Масса нейтрона незначительно превосходит массу протона.