
- •5. Атомная физика. Элементы квантовой физики
- •5.1. Модели атома. Спектры излучения атомов водорода
- •5.2. Постулаты Бора
- •Решая совместно уравнение второго закона Ньютона для электрона
- •5.3. Волновые свойства вещества. Гипотеза де Бройля. Принцип неопределенности
- •5.4. Волновая функция и уравнение Шредингера
- •Функция будет принимать то или иное значение в зависимости от внешних условий. Внешние условия – это силы, действующие на микрочастицу, представлены потенциальной функцией u ( X, y, z, t ).
- •5.5.Квантовомеханическое описание состояния электрона в атоме. Принцип Паули. Структура электронных оболочек атома
- •5.6.Вынужденное излучение. Лазеры
5.3. Волновые свойства вещества. Гипотеза де Бройля. Принцип неопределенности
Объяснение фотоэффекта и экспериментов Комптона по рассеянию фотонов продемонстрировали, что электромагнитное излучение обладает свойствами частиц. Возник вопрос о свойствах других известных частиц. Если свет играет двойственную роль (частиц и волн), то, может быть, и электрон (как и другие известные частицы) ведет себя подобно волне? В 1924 г. французский физик Луи Виктор де Бройль выдвинул предположение, что наряду с корпускулярным поведением волн должно обнаруживаться волновое поведение частиц.
Чтобы описать волну, нужно задать ее
длину. Известно, что импульс фотона
связан с его длиной волны
соотношением
или
.
Де Бройль предположил, что точно тем же соотношением должна определяться длина волны, отвечающая движению частицы вещества. Длина волны де Бройля:
.
(5.10)
Не прошло и трех лет со времени появления гипотезы де Бройля, как волновые свойства электрона были обнаружены в экспериментах по дифракции электронного потока на кристаллах (в качестве дифракционных решеток). Позже были обнаружены волновые свойства у других частиц, а также у атомов и ионов.
Применять классические соображения к объектам частица-волна и отдельным событиям микромира стало невозможно. В связи с этим немецкий физик Вернер Гейзенберг пришел к мысли о том, что в природе должен существовать общий принцип, ограничивающий возможности любых экспериментов (невозможно, например, точно определить положение и скорость такой частицы-волны в пространстве). Этот принцип, сформулированный в 1927 г., получил название принципа неопределенности.
Гейзенбергом получены соотношения, количественно выражающие эту неопределенность:
.
(5.11)
Смысл первого выражения состоит в том, что, чем более точно локализована микрочастица, тем с меньшей точностью мы знаем ее импульс. И наоборот, если мы определяем с высокой точностью импульс (скорость) частицы (электрона, например), то такое измерение лишает нас возможности точно узнать, где находится частица после измерения. Согласно классической теории, частица в каждый момент занимает вполне определенное положение и имеет точно определенную скорость движения. Попытаемся применить эти представления к элементарной частице электрону.
Локализуем электрон в одном измерении.
Для этого пропустим пучок электронов
через узкую щель. Неопределенность
положения электрона равна ширине щели.
При прохождении через щель электронные
волны дифрагируют, образуя на экране
дифракционную картину. Неизвестно, в
какое место экрана попадет отдельный
электрон. Дифракция вносит неопределенность
в значение импульса отдельного электрона.
Второе соотношение можно проиллюстрировать
следующим примером. Атом излучает фотон
в течение примерно 10–9с.
Неопределенность в энергии фотона:
.
Идея де Бройля послужила исходным пунктом квантовой механики, созданной в 1926 - 1927 г. трудами В. Гейзенберга, М. Борна, Э. Шредингера, и П. Дирака.