
- •3. Равномерное и равнопеременное движения. Координатное и графическое представления.
- •4. Криволинейное движение. Нормальное и тангенциальное ускорение.
- •5. Движение точки по окружности. Угловые перемещение, скорость, ускорение. Связь между линейными и угловыми характеристиками.
- •6. Динамика материальной точки. Сила и движение. Инерциальные системы отсчета и первый закон Ньютона.
- •7. Фундаментальные взаимодействия. Силы различной природы (упругие, гравитационные, трения), второй закон Ньютона. Третий закон Ньютона.
- •8. Закон всемирного тяготения. Сила тяжести и вес тела.
- •9. Силы сухого и вязкого трения. Движение по наклонной плоскости.
- •11. Импульс системы материальных точек. Уравнение движения центра масс. Импульс и его связь с силой. Столкновения и импульс силы. Закон сохранения импульса.
- •14. Потенциальные и непотенциальные поля. Консервативные и диссипативные силы. Потенциальная энергия.
- •15. Закон всемирного тяготения. Поле тяготения, его напряженность и потенциальная энергия гравитационного взаимодействия.
- •16. Работа по перемещению тела в поле тяготения.
- •17. Механическая энергия и её сохранение.
- •18. Соударение тел. Абсолютно упругий и неупругий удары.
- •19. Динамика вращательного движения. Момент силы и момент инерции. Основной закон механики вращательного движения абсолютно твердого тела.
- •20. Вычисление момента инерции. Примеры. Теорема Штейнера.
- •21. Момент импульса и его сохранение. Гироскопические явления.
- •22. Кинетическая энергия вращающегося твердого тела.
- •24. Математический маятник.
- •26. Энергия колебательного движения.
- •27. Векторная диаграмма. Сложение параллельных колебаний одинаковой частоты.
- •28. Биения
- •29. Сложение взаимно перпендикулярных колебаний. Фигуры Лиссажу.
- •30. Статистическая физика (мкт) и термодинамика. Состояние термодинамической системы. Равновесное, неравновесное состояния. Термодинамические параметры. Процесс. Основные положения мкт.
- •31. Температура в термодинамике. Термометры. Температурные шкалы. Идеальный газ. Уравнение состояния идеального газа.
- •32. Давление газа на стенку сосуда. Закон идеального газа в мкт.
- •33. Температура в мкт(31 вопрос). Средняя энергия молекул. Среднеквадратичная скорость молекул.
- •34. Число степеней свободы механической системы. Число степеней свободы молекул. Закон равнораспределения энергии по степеням свободы молекулы.
- •35. Работа, совершаемая газом при изменениях его объема. Графическое представление работы. Работа в изотермическом процессе.
- •37.Первое начало тд. Применение первого начала к различным изопроцессам.
- •38. Теплоемкость идеального газа. Уравнение Майера.
- •39. Уравнение адиабаты идеального газа.
- •40. Политропические процессы.
- •41. Второе начало тд. Тепловые двигатели и холодильники. Формулировка Клаузиуса.
- •42. Двигатель Карно. Кпд двигателя Карно. Теорема Карно.
- •43. Энтропия.
- •44. Энтропия и второе начало тд.
- •46. Распределение молекул газа по скоростям. Распределение Максвелла.
- •48. Свободные затухающие колебания. Характеристики затухания: коэффициент затухания, время, релаксация, декремент затухания, добротность колебательной системы.
- •49. Электрический заряд. Закон Кулона. Электростатическое поле (эсп). Напряженность эсп. Принцип суперпозиции. Силовые линии эсп.
- •50.Работа по перемещению заряда в эсп. Потенциальная энергия и заряд эсп. Принцип суперпозиции. Теорема о циркуляции для эсп.
- •51. Поток вектора напряженности эсп. Теорема Гаусса. Применение теоремы Гаусса к расчету эсп. Бесконечной равномерно заряженной плоскости.
19. Динамика вращательного движения. Момент силы и момент инерции. Основной закон механики вращательного движения абсолютно твердого тела.
Рассмотрим движение
твердого тела, имеющею ось вращения под
действием произвольно направленной
силы
,
приложенной к телу в некоторой точке А
, которую можно разложить на две
составляющие: вертикальную и горизонтальную
(рис.5.1). Вертикальная составляющая может
вызывать перемещение тела в направлении
оси вращения поэтому при рассмотрении
вращательного движения ее можно
исключить.Горизонтальная составляющая
,
если она не пересекается с осью
вызывает
вращение тела. Действие этой силы зависит
от ее числового значения и расстояния
линии действия от оси вращения.
Пусть на тело, в
плоскости перпендикулярной оси
вращения действует
сила
(рис.5.2).
Разложим эту силу на две составляющие:
и
Сила пересекает
ось вращения и, следовательно, не влияет
на вращение тела. Под действием
составляющей
тело
будет совершать вращательное движение
вокруг оси
.
Расстояние
от
оси вращения до линии вдоль которой
действует сила
называется
плечом силы
.
Моментом силы относительно точки О
называется произведение модуля силы
на
плечо
С учетом, что
момент силы
.
С точки зрения
векторной алгебры это выражение
представляет векторное произведение
радиуса-вектора ,
проведенного в точку приложения силы
на
эту силу. Таким образом, момент силы
относительно точки О является векторной
величиной и равен
|
(5.1) |
Вектор момента
силы направлен перпендикулярно к
плоскости, проведенной через векторы и
,
и образует с ними правую тройку векторов
(при наблюдении из вершины вектора М
видно, что вращение по кратчайшему
расстоянию от
к
происходит
против часовой стрелки).
Согласно
второму закону Ньютона, для тангенциальной
составляющейсилы ,
действующей на материальную точку
массой m, и ускорения
можем записать
С учетом, что
и
имеем
Домножимлевую
и правую части на и
получим
|
(5.2) |
Или Произведение массы материальной точки тела на квадрат ее расстояния до оси вращения называется моментом инерции материальной точки относительно оси вращения:
20. Вычисление момента инерции. Примеры. Теорема Штейнера.
Момент инерции тела J относительно произвольной оси равен сумме момента инерции этого тела Jc относительно оси, проходящей через центр масс тела параллельно рассматриваемой оси, и произведения массы тела m на квадрат расстояния d между осями (теорема Гюйгенса-Штейнера)
Найдем зависимость между моментами инерции тела относительно параллельных осей z и z', одна из которых проходит через центр масс С тела. Проведем остальные оси так, как это показано на рис. 3.6
По определению осевых моментов инерции имеем
,
,
.
Тогда
Так
как и
согласно (3.8)
получаем
21. Момент импульса и его сохранение. Гироскопические явления.
Моментом импульса (моментом количества движения) материальной точки относительно неподвижной точки О называется вектор L, равный векторному произведению радиус-вектора r, проведенного из точки О в место нахождения материальной точки, на вектор p ее импульса
L=r*P, где r - радиус-вектор частицы относительно выбранного начала отсчета, p – импульс частицы
Момент импульса системы относительно неподвижной точки:
Если тело вращается вокруг одной из главных осей инерции, то направление вектора момента импульса тела совпадает с направлением вектора его угловой скорости, а значение момента импульса может быть выражено через момент инерции
Закон сохранения момента импульса (закон сохранения углового момента) — векторная сумма всех моментов импульса относительно любой оси для замкнутой системы остается постоянной в случае равновесия системы. В соответствии с этим, момент импульса замкнутой системы относительно любой неподвижной точки не изменяется со временем.
Закон сохранения момента импульса есть проявление изотропности пространства.
гироскопы — массивные однородные тела, вращающиеся с большой угловой скоростью около своей оси сим метрии, являющейся свободной осью.
Если момент внешних сил, приложенных к вращающемуся гироскопу относительно его центра масс, отличен от нуля, то наблюдается явление, получившее название гироскопического эффекта. Оно состоит в том, что под действием пары сил F, приложенной к оси вращающегося гироскопа, ось гироскопа поворачивается вокруг прямой О3О3, а не вокруг прямой О2О2, как это казалось бы естественным на первый взгляд (O1O1 и О2О2 лежат в плоскости чертежа, а О3О3 и силы F перпендикулярны ей).