
- •1. Кинематика материальной точки. Система отсчета. Траектория, перемещение, скорость,
- •2. Криволинейное движение. Нормальное и тангенсальное ускорения.
- •3. Движение точки по окружности. Угловые перемещение, ускорение, скорость. Связь между линейными и угловыми характеристиками.
- •4. Динамика материальной точки. Инерциальные системы отсчета и первый закон Ньютона.
- •5. Фундаментальные взаимодействия. Силы различной природы(упругие, гравитационные, трения). Второй закон Ньютона. Масса. Третий закон Ньютона.
- •6. Импульс системы материальных точек. Уравнение движения центра масс. Закон сохранения импульса.
- •7. Момент импульса и момент силы. Уравнение моментов. Закон сохранения момента импульса. Гироскопические явления.
- •8. Вращение твердого тела вокруг неподвижной оси. Основной закон динамики вращательного движения абсолютно твердого тела. Момент инерции.
- •9. Расчет момента инерции тел простой формы. Теорема Штейнера.
- •10. Кинетическая энергия материальной точки и абсолютно твердого тела.
- •11. Работа переменной силы, мощность. Потенциальные и непотенциальные поля. Консервативные и диссипативные силы. Потенциальная энергия.
- •12. Закон всемирного тяготения. Поле тяготения, его напряженность и потенциальная энергия гравитационного взаимодействия.
- •13. Работа по перемещения тела в поле тяготения. Космические скорости.
- •14. Соударения тел. Упругое и неупругое взаимодействия.
- •15.Закон Паскаля. Гидростатическое давление. Сила Архимеда. Уравнение Бернулли
- •16.Вязкость. Движение тел в жидкостях и газах
- •17.Постулаты сто. Границы применимости классической механики.
- •18.Сто, относительность длины и промежутков времени. Взаимосвязь массы и энергии, соотношение между полной энергией и импульсом частицы.
- •19.Колебательное движение и его характеристики: смещение, амплитуда, фаза, циклическая частота, период, скорость, ускорение.
- •21. Пружинный и физический маятники.
- •22. Свободные затухающие колебания. Характеристики затухания: коэффициент затухания, время релаксации, декремент затухания, добротность колебательной системы.
- •23 . .Вынужденные колебания Резонанс
- •24.Волновое движение.
- •25.Волновые процессы в упругой среде, скорость распространения волны.
- •26. Термодинамическая система параметры состояния термодинамической системы. Основные положения молекулярно-кинетической теории газов.
- •27. Закон равномерного распределения энергии по степеням свободы молекул. Основное уравнение молекулярно-кинетической теории газов.
- •28.Уравнение состояния идеального газа
- •29. Закон Максвелла распределения молекул по скоростям теплового движения. Барометрическая формула. Распределение Больцмана.
- •30. Среднее число столкновений и средняя длина свободного движения молекул.
- •31.Явления переноса. Диффузия, вязкость, теплопроводность.
- •32. Первый закон термодинамики. Работа, теплота, теплоемкость, ее виды.
- •33. Политропный процесс, его частные случаи: изобарный, изотермический, адиабатный, изохорный.
- •34. Второй закон термодинамики. Энтропия. Тепловые двигатели и холодильные машины. Цикл Карно.
- •35.Реальные газы. Уравнение Ван-дер-Ваальса. Изотермы реальных газов. Фазовые превращения
- •37.Электрическое поле. Напряженность поля. Поле точечного заряда. Графическое изображение электростатических полей. Принцип суперпозиции полей. Поле системы зарядов.
- •38.Энергетическая характеристика электростатического поля — потенциал. Потенциал поля точечного заряда и системы зарядов. Связь между напряженностью электрического поля и потенциалом.
- •39.Работа сил электростатического поля по перемещению зарядов. Циркуляция вектора напряженности. Потенциальный характер электростатического поля.
- •40.Поток вектора напряженности электростатического поля. Теорема Гаусса. Вычисление напряженности поля заряженных сферы и шара с помощью теоремы Гаусса
- •41.Поляризация диэлектриков. Вектор поляризации. Электрический диполь. Электрический момент диполя. Полярные и неполярные молекулы.
- •42.Свободные и связанные заряды. Электростатическое поле в диэлектриках. Диэлектрическая проницаемость и восприимчивость. Сегнетоэлектрики.
- •44.Энергия заряженного проводника. Энергия заряженного конденсатора. Энергия электростатического поля. Объемная плотность энергии.
- •45.Характеристики электрического тока: сила тока, вектор плотности тока. Законы Ома и Джоуля-Ленца в дифференциальной форме
- •46.Основные характеристики электрической цепи: разность потенциалов, электродвижущая сила, напряжение, сопротивление. Зависимость сопротивления от температуры. Сверхпроводимость.
- •47.Разветвленные цепи. Правила Кирхгофа и их физическое содержание.
- •48.Работа выхода электронов из металла. Контактная разность потенциалов. Законы Вольта.
38.Энергетическая характеристика электростатического поля — потенциал. Потенциал поля точечного заряда и системы зарядов. Связь между напряженностью электрического поля и потенциалом.
Энергетическая характеристика электростатического поля — потенциал
потенциа́л— скалярная энергетическая характеристика электростатического поля, характеризующая потенциальную энергию поля, которой обладает единичный заряд, помещённый в данную точку поля. Единицей измерения потенциала является, таким образом, единица измерения работы, деленная на единицу измерения заряда.
потенциал
равен отношению потенциальной энергии
взаимодействия заряда с полем к величине
этого заряда:
Напряжённость
электри́ческого по́ля — векторная
физическая величина, характеризующая
электрическое поле в данной точке и
численно равная отношению силы
действующей на пробный заряд, помещенный
в данную точку поля, к величине этого
заряда q:
Для установления связи между силовой характеристикой электрического поля - напряжённостью и его энергетической характеристикой - потенциаломрассмотрим элементарную работу сил электрического поля на бесконечно малом перемещении точечного заряда q: dA = q E dl, эта же работа равна убыли потенциальной энергии заряда q: dA = - dWп = - q d, где d - изменение потенциала электрического поля на длине перемещения dl. Приравнивая правые части выражений, получаем: E dl = -d или в декартовой системе координат
Ex dx + Ey dy + Ez dz = -d(фи)
где
Ex, Ey, Ez - проекции вектора напряженности
на оси системы координат. Поскольку
выражение (1.8) представляет собой полный
дифференциал, то для проекций вектора
напряженности имеем
откуда
Стоящее в скобках выражение является градиентом потенциала j, т. е.
E = - grad = -Ñ.
Напряжённость
в какой-либо точке электрического поля
равна градиенту потенциала в этой точке,
взятому с обратным знаком. Знак «минус»
указывает, что напряженность E направлена
в сторону убывания потенциала. Рассмотрим
электрическое поле, создаваемое
положительным точечным зарядом q (рис.
1.6). Потенциал поля в точке М, положение
которой определяется радиус-вектором
r, равен = q / 4pe0er. Направление радиус-вектора
r совпадает с направлением вектора
напряженности E, а градиент потенциала
направлен в противоположную сторону.
Проекция градиента на направление
радиус-вектора
Проекция
же градиента потенциала на направление
вектора t, перпендикулярного вектору
r, равна
т. е. в этом направлении потенциал электрического поля является постоянной величиной ( = const).
В
рассмотренном случае направление
вектора r совпадает с направлением
силовых
линий. Обобщая полученный результат,
можно утверждать, что во всех точках
кривой, ортогональной к силовым линиям,
потенциал электрического поля одинаков.
Геометрическим местом точек с одинаковым
потенциалом является эквипотенциальная
поверхность, ортогональная к силовым
линиям.
При графическом изображении электрических полей часто используют эквипотенциальные поверхности. Обычно эквипотенциали проводят таким образом, чтобы разность потенциалов между любыми двумя эквипотенциальными поверхностями была одинакова. На рис. 1.7 приведена двухмерная картина электрического поля. Силовые линии показаны сплошными линиями, эквипотенциали - штриховыми.
Подобное изображение позволяет сказать, в какую сторону направлен вектор напряжённости электрического поля; где напряжённость больше, где меньше; куда начнёт двигаться электрический заряд, помещённый в ту или иную точку поля. Так как все точки эквипотенциальной поверхности находятся при одинаковом потенциале, то перемещение заряда вдоль нее не требует работы. Это значит, что сила, действующая на заряд, все время перпендикулярна перемещению.