
- •1. Кинематика материальной точки. Система отсчета. Траектория, перемещение, скорость,
- •2. Криволинейное движение. Нормальное и тангенсальное ускорения.
- •3. Движение точки по окружности. Угловые перемещение, ускорение, скорость. Связь между линейными и угловыми характеристиками.
- •4. Динамика материальной точки. Инерциальные системы отсчета и первый закон Ньютона.
- •5. Фундаментальные взаимодействия. Силы различной природы(упругие, гравитационные, трения). Второй закон Ньютона. Масса. Третий закон Ньютона.
- •6. Импульс системы материальных точек. Уравнение движения центра масс. Закон сохранения импульса.
- •7. Момент импульса и момент силы. Уравнение моментов. Закон сохранения момента импульса. Гироскопические явления.
- •8. Вращение твердого тела вокруг неподвижной оси. Основной закон динамики вращательного движения абсолютно твердого тела. Момент инерции.
- •9. Расчет момента инерции тел простой формы. Теорема Штейнера.
- •10. Кинетическая энергия материальной точки и абсолютно твердого тела.
- •11. Работа переменной силы, мощность. Потенциальные и непотенциальные поля. Консервативные и диссипативные силы. Потенциальная энергия.
- •12. Закон всемирного тяготения. Поле тяготения, его напряженность и потенциальная энергия гравитационного взаимодействия.
- •13. Работа по перемещения тела в поле тяготения. Космические скорости.
- •14. Соударения тел. Упругое и неупругое взаимодействия.
- •15.Закон Паскаля. Гидростатическое давление. Сила Архимеда. Уравнение Бернулли
- •16.Вязкость. Движение тел в жидкостях и газах
- •17.Постулаты сто. Границы применимости классической механики.
- •18.Сто, относительность длины и промежутков времени. Взаимосвязь массы и энергии, соотношение между полной энергией и импульсом частицы.
- •19.Колебательное движение и его характеристики: смещение, амплитуда, фаза, циклическая частота, период, скорость, ускорение.
- •21. Пружинный и физический маятники.
- •22. Свободные затухающие колебания. Характеристики затухания: коэффициент затухания, время релаксации, декремент затухания, добротность колебательной системы.
- •23 . .Вынужденные колебания Резонанс
- •24.Волновое движение.
- •25.Волновые процессы в упругой среде, скорость распространения волны.
- •26. Термодинамическая система параметры состояния термодинамической системы. Основные положения молекулярно-кинетической теории газов.
- •27. Закон равномерного распределения энергии по степеням свободы молекул. Основное уравнение молекулярно-кинетической теории газов.
- •28.Уравнение состояния идеального газа
- •29. Закон Максвелла распределения молекул по скоростям теплового движения. Барометрическая формула. Распределение Больцмана.
- •30. Среднее число столкновений и средняя длина свободного движения молекул.
- •31.Явления переноса. Диффузия, вязкость, теплопроводность.
- •32. Первый закон термодинамики. Работа, теплота, теплоемкость, ее виды.
- •33. Политропный процесс, его частные случаи: изобарный, изотермический, адиабатный, изохорный.
- •34. Второй закон термодинамики. Энтропия. Тепловые двигатели и холодильные машины. Цикл Карно.
- •35.Реальные газы. Уравнение Ван-дер-Ваальса. Изотермы реальных газов. Фазовые превращения
- •37.Электрическое поле. Напряженность поля. Поле точечного заряда. Графическое изображение электростатических полей. Принцип суперпозиции полей. Поле системы зарядов.
- •38.Энергетическая характеристика электростатического поля — потенциал. Потенциал поля точечного заряда и системы зарядов. Связь между напряженностью электрического поля и потенциалом.
- •39.Работа сил электростатического поля по перемещению зарядов. Циркуляция вектора напряженности. Потенциальный характер электростатического поля.
- •40.Поток вектора напряженности электростатического поля. Теорема Гаусса. Вычисление напряженности поля заряженных сферы и шара с помощью теоремы Гаусса
- •41.Поляризация диэлектриков. Вектор поляризации. Электрический диполь. Электрический момент диполя. Полярные и неполярные молекулы.
- •42.Свободные и связанные заряды. Электростатическое поле в диэлектриках. Диэлектрическая проницаемость и восприимчивость. Сегнетоэлектрики.
- •44.Энергия заряженного проводника. Энергия заряженного конденсатора. Энергия электростатического поля. Объемная плотность энергии.
- •45.Характеристики электрического тока: сила тока, вектор плотности тока. Законы Ома и Джоуля-Ленца в дифференциальной форме
- •46.Основные характеристики электрической цепи: разность потенциалов, электродвижущая сила, напряжение, сопротивление. Зависимость сопротивления от температуры. Сверхпроводимость.
- •47.Разветвленные цепи. Правила Кирхгофа и их физическое содержание.
- •48.Работа выхода электронов из металла. Контактная разность потенциалов. Законы Вольта.
27. Закон равномерного распределения энергии по степеням свободы молекул. Основное уравнение молекулярно-кинетической теории газов.
Число степеней свободы – это число независимых величин с помощью которых может быть задано положение системы. (1 атом =3 ст., 2 атома =5ст. 3 атома=6ст.)
Закон Больцмана о равномерном распределении энергии по степеням свободы молекул: для статической системы, находящейся в состоянии термодинамического равновесия, на каждую поступательную и вращательную степени свободы приходится в среднем кинетическая энергия, равная КТ/2 , а на каждую колебательную – КТсредняя энергия приходящаяся на одну степень свободы: (52)____________
У одноатомной молекулы i = 3, тогда для одноатомных молекул:(53) ____________
для двухатомных молекул: (54)_____________
Таким образом, на среднюю кинетическую энергию молекулы, имеющей i-степеней свободы, приходится: (55)_________________.
Молекулярно-кинетическая теория (сокращённо МКТ) — теория, рассматривающая строение вещества с точки зрения трёх основных приближенно верных положений:
1) все тела состоят из частиц, размером которых можно пренебречь: атомов, молекул и ионов;
2) частицы находятся в непрерывном хаотическом движении (тепловом);
3) частицы взаимодействуют друг с другом путём абсолютно упругих столкновений.
28.Уравнение состояния идеального газа
Уравнение
состояния идеального газа (иногда
уравнение Клапейрона или уравнение
Клапейрона — Менделеева) — формула,
устанавливающая зависимость между
давлением, молярным объёмом и абсолютной
температурой идеального газа. Уравнение
имеет вид:
где
—давление,
— молярный объём,
—универсальная
газовая постоянная
— абсолютная температура,К.
Так
как
, где
— количество вещества, а
, где
— масса,
— молярная масса, уравнение состояния
можно записать:
Эта форма записи носит имя уравнения (закона) Менделеева — Клапейрона.
29. Закон Максвелла распределения молекул по скоростям теплового движения. Барометрическая формула. Распределение Больцмана.
Закон Максвелла распределения молекул по скоростям теплового движения
Закон Максвелла описывается некоторой функцией f(v), называемой функцией распределения молекул по скоростям. Если разбить диапазон скоростей молекул намалые интервалы, равные dv, то на каждый интервал скорости будет приходиться некоторое число молекул dN(v), имеющих скорость, заключенную в этом интервале. Функция f(v) определяет относительное число молекул dN (v)/N, скорости которых лежат в интервале от v до v+dv, т. е.откуда f(v)=dN(v)/Ndv.
Применяя методы теории вероятностей, Максвелл нашел функцию f(v) — закон для распределения молекул идеального газа по скоростям (56) ______________________
Из (44.1) видно, что конкретный вид функции зависит от рода газа (от массы молекулы) и от параметра состояния (от температуры Т).График функции (44.1) приведен на рис. Так как при возрастании v множитель уменьшается быстрее, чем растет множитель v2, то функция f(v), начинаясь от нуля, достигает максимума при vв и затем асимптотически стремится к нулю. Кривая несимметрична относительно vв.
Барометрическая формула. Распределение Больцмана
(57)
Выражение (45.2) называется барометрической формулой. Она позволяет найти атмосферное давление в зависимости от высоты или, измерив давление, найти высоту. Так как высоты обозначаются относительно уровня моря, где давление считается нормальным, то выражение (45.2) может быть записано в виде
где р — давление на высоте h.
Прибор для определения высоты над земной поверхностью называется высотомером (или альтиметром). Его работа основана на использовании формулы (45.3). Из этой формулы следует, что давление с высотой убывает тем быстрее, чем тяже лее газ.
Барометрическую формулу (45.3) можно преобразовать, если воспользоваться выражением (42.6) p=nkT:
где n — концентрация молекул на высоте h, n0 — то же на высоте h=0. Так как M = m0NA (NA— постоянная Авогадро, m0 —масса одной молекулы), а R=kNA, то (58)______________
где m0gh=П — потенциальная энергия молекулы в поле тяготения, т. е. (58)_______________.
Выражение называется распре делением Больцмана во внешнем потенциальном поле. Из него следует, что при постоянной температуре плотность газа больше там, где меньше потенциальная энергия его молекул.