- •Историческая справка
- •Взаимосвязь тау с другими техническими науками
- •Основные понятия и определения тау
- •Основные характеристики оу
- •Примеры объектов управления
- •Типовая функциональная схема сар (замкнутая)
- •Классификация сау
- •Классификация по характеру динамических процессов в системе
- •1. Непрерывность.
- •2. Линейность.
- •Классификация по характеристикам управления
- •1. По принципу управления.
- •2. По управляющему воздействию (задающее воздействие).
- •3. Свойства в установившемся режиме.
- •Классификация сау по другим признакам
- •Основные (типовые) управляющие воздействия сау
- •Ступенчатому воздействию соответствует функция
- •Временные характеристики сау
- •Переходные характеристики h(t) и (t) называют такжевременными. Частотные динамические характеристики
- •Передаточной функцией w(p) называют отношение изображения выходной величины к изображению входной величины при нулевых начальных условиях.
- •Структурная схема звена сау:
- •Типовые динамические звенья
- •Безынерционное звено
- •Апериодическое звено
- •Шаблон поправки
- •Порядок построения лачх апериодического звена
- •Примеры апериодических звеньев
- •Колебательное звено
- •Идеальное интегрирующее звено
- •Реальное интегрирующее звено
- •Изодромное интегрирующее звено
- •Примером изодромного интегрирующего звена может служить гидравлический демпфер, к поршню которого присоединена пружина. Идеальное дифференцирующее звено
- •Реальное дифференцирующее звено
- •Звено чистого запаздывания
- •Структурные схемы сау
- •Типовые элементы структурных схем сау
- •Многоконтурные структурные схемы
- •Некоторые правила структурных преобразований
- •Изображение структурных схем в виде графов
- •Устойчивость систем сау
- •Понятие устойчивости по Ляпунову.
- •Если свободная составляющая неограниченно возрастает, т.Е. Если
- •Критерий Гурвица Автоматическая система, описываемая характеристическим уравнением
- •Критерий Рауса
- •Принцип аргумента
- •Критерий Михайлова Рассмотрим характеристическое уравнение системы
- •Алгоритм применения критерия Михайлова.
- •Формулировка критерия Михайлова.
- •Критерий Найквиста
- •Изменение аргумента от 0 до :
- •Система неустойчивая.
- •Алгоритм использования критерия Найквиста
- •С равнительный анализ критериев устойчивости
- •Запас устойчивости Запас устойчивости по алгебраическому критерию Гурвица
- •Запас устойчивости при частотных критериях устойчивости
- •Устойчивость систем со звеном чистого запаздывания
- •Структурно устойчивые и структурно неустойчивые системы
- •Влияние параметров на устойчивость системы
- •Анализ качества сау Основные показатели качества сау
- •Прямые методы оценки качества
- •Определение показателей качества по типовым характеристикам
- •Приближенное определение показателей качества по виду р() (Косвенный метод)
- •О тбрасываемая часть при частотах свышеПвлияет на начало переходной характеристикиh(t).
- •Построение вещественной частотной характеристики с использованием
- •Косвенные методы оценки показателей качества сау
- •Корневые методы оценки показателей качества
- •Связь колебательности с перерегулированием
- •Смещенные уравнения
- •Влияние нулей передаточной функции на качество переходного процесса
- •Диаграмма Вышнеградского
- •Интегральный метод оценки показателей качества
- •Линейная интегральная оценка
- •Метод Кулебакина
- •Апериодическая интегральная оценка
- •Особенности синтеза
- •Этапы синтеза сау
- •Желаемая лачх
- •Построение желаемой лачх
- •Синтез последовательных корректирующих устройств
- •Алгоритм построения сау с последовательными
- •Охват апериодического звена гибкой положительной обратной связью
- •Передаточная функция типовой одноконтурной системы
- •Тогда ошибка будет зависеть только от задающего воздействия
- •Ошибки статических и астатических систем при типовых задающих воздействиях
- •Ошибка при возмущающем воздействии, не равном нулю
- •Чувствительность параметров
- •Т иповые законы регулирования линейных систем
- •Описание сау методом пространства состояния
- •Схемы переменных состояний (спс)
- •Метод прямого программирования
- •Метод параллельного программирования
- •Метод последовательного программирования
- •Схемы переменных состояния типовых звеньев
- •Области применения методов программирования схем переменных состояния
- •Матрица перехода
- •Аналитический способ получения матрицы перехода
- •Получение матрицы перехода разложением в ряд
- •Получение матрицы перехода по схеме переменных состояния
Шаблон поправки
Д

В пределах одной декады ЛАЧХ вокруг частоты с претерпевает наибольшие изменения. Шаблон таких изменений уже вычислен и приведен в литературе.
Порядок построения лачх апериодического звена
Строим асимптотический ЛАЧХ.
Выбирается шаблон поправки, ось ординат которого совмещается с частотой среза асимптотической ЛАЧХ.
По данному шаблону вносятся изменения в асимптотическую ЛАЧХ.
Примеры апериодических звеньев

Колебательное звено
Динамика процессов в колебательном звене описывается уравнением:
,
где
k
коэффициент усиления звена; Т
постоянная времени колебательного
звена;
коэффициент демпфирования звена (или
коэффициент затухания).
В зависимости от величины коэффициента демпфирования различают четыре типа звеньев:
а)
колебательное 0<
<1;
б)
апериодическое звено II
порядка
>1;
в)
консервативное звено
=0;
г)
неустойчивое колебательное звено
<0.
1. Переходная характеристика колебательного звена:

Амплитуды
первых двух колебаний определяют
величину -
.
Чем ближе коэффициент затухания к единице, тем меньше амплитуда колебаний, чем меньше Т, тем быстрее устанавливаются переходные процессы.


При >1 колебательное звено называется апериодическим звеном второго порядка (последовательное соединение двух апериодических звеньев с постоянными времени Т1 и Т2).
c

.
Здесь
0
– величина, обратная постоянной времени
(
);
.
Такое звено в литературе называют консервативным звеном.

Все переходные характеристики будут колебаться вдоль величины k.
2. Импульсная переходная характеристика:




3


4.АФХ:

График АФХ будет выглядеть следующим образом:
Это характеристика для колебательного звена и для апериодического звена второго порядка.
Для
апериодического звена -
.
А в случае б) формула АФХ совпадает со случаем а).

- АФХ для консервативного звена.
5

.
АЧХ
при частоте
имеет максимум (резонансный пик), равный
.
Отсюда видно, что, чем меньше коэффициент , тем больше резонансный пик.
![]()
Т

6.ФЧХ:

Для случая б) график будет аналогичным, только перегиб будет чуть меньше (штриховая линия на графике).

7.ЛАЧХ:
,
где
![]()
Асимптотическая ЛАЧХ колебательного звена:

Определяем наклон на втором участке:

Шаблон к графику а) дается от 0 до 1 шагом в 0,1.
К


Структурная схема колебательного звена будет выглядеть следующим образом:
![]()

Примером колебательного звена является любая RLc- цепь.
Идеальное интегрирующее звено
Динамика интегрирующего звена описывается дифференциальным уравнением
.
1. Переходная характеристика:
![]()
2. Импульсная переходная характеристика (или функция веса) имеет вид:
![]()
3. Передаточная функция идеального интегрирующего звена:
![]()
4. АФХ звена:
![]()
на комплексной плоскости изображается в виде прямой, совпадающей с мнимой осью.
5. АЧХ:
![]()
представляет
собой гиперболу, которая при
стремится к бесконечности. При увеличении
частоты значенияА()
стремятся к нулю. Это свойство сближает
интегрирующие звенья с инерционными.
6. ФЧХ идеального интегрирующего звена:

показывает, что сдвиг фаз, создаваемый звеном, на всех частотах одинаков и равен
-900.
7. ЛАЧХ:
![]()
представляет собой прямую с наклоном –20дБ/декаду, проходящую через точку с координатами =1, L()=20lgk.
П

И

,
где S – площадь поверхности жидкости (м2), а коэффициент k – выражением
.
Идеальных интегрирующих звеньев в реальных объектах практически не существует.
