- •Историческая справка
- •Взаимосвязь тау с другими техническими науками
- •Основные понятия и определения тау
- •Основные характеристики оу
- •Примеры объектов управления
- •Типовая функциональная схема сар (замкнутая)
- •Классификация сау
- •Классификация по характеру динамических процессов в системе
- •1. Непрерывность.
- •2. Линейность.
- •Классификация по характеристикам управления
- •1. По принципу управления.
- •2. По управляющему воздействию (задающее воздействие).
- •3. Свойства в установившемся режиме.
- •Классификация сау по другим признакам
- •Основные (типовые) управляющие воздействия сау
- •Ступенчатому воздействию соответствует функция
- •Временные характеристики сау
- •Переходные характеристики h(t) и (t) называют такжевременными. Частотные динамические характеристики
- •Передаточной функцией w(p) называют отношение изображения выходной величины к изображению входной величины при нулевых начальных условиях.
- •Структурная схема звена сау:
- •Типовые динамические звенья
- •Безынерционное звено
- •Апериодическое звено
- •Шаблон поправки
- •Порядок построения лачх апериодического звена
- •Примеры апериодических звеньев
- •Колебательное звено
- •Идеальное интегрирующее звено
- •Реальное интегрирующее звено
- •Изодромное интегрирующее звено
- •Примером изодромного интегрирующего звена может служить гидравлический демпфер, к поршню которого присоединена пружина. Идеальное дифференцирующее звено
- •Реальное дифференцирующее звено
- •Звено чистого запаздывания
- •Структурные схемы сау
- •Типовые элементы структурных схем сау
- •Многоконтурные структурные схемы
- •Некоторые правила структурных преобразований
- •Изображение структурных схем в виде графов
- •Устойчивость систем сау
- •Понятие устойчивости по Ляпунову.
- •Если свободная составляющая неограниченно возрастает, т.Е. Если
- •Критерий Гурвица Автоматическая система, описываемая характеристическим уравнением
- •Критерий Рауса
- •Принцип аргумента
- •Критерий Михайлова Рассмотрим характеристическое уравнение системы
- •Алгоритм применения критерия Михайлова.
- •Формулировка критерия Михайлова.
- •Критерий Найквиста
- •Изменение аргумента от 0 до :
- •Система неустойчивая.
- •Алгоритм использования критерия Найквиста
- •С равнительный анализ критериев устойчивости
- •Запас устойчивости Запас устойчивости по алгебраическому критерию Гурвица
- •Запас устойчивости при частотных критериях устойчивости
- •Устойчивость систем со звеном чистого запаздывания
- •Структурно устойчивые и структурно неустойчивые системы
- •Влияние параметров на устойчивость системы
- •Анализ качества сау Основные показатели качества сау
- •Прямые методы оценки качества
- •Определение показателей качества по типовым характеристикам
- •Приближенное определение показателей качества по виду р() (Косвенный метод)
- •О тбрасываемая часть при частотах свышеПвлияет на начало переходной характеристикиh(t).
- •Построение вещественной частотной характеристики с использованием
- •Косвенные методы оценки показателей качества сау
- •Корневые методы оценки показателей качества
- •Связь колебательности с перерегулированием
- •Смещенные уравнения
- •Влияние нулей передаточной функции на качество переходного процесса
- •Диаграмма Вышнеградского
- •Интегральный метод оценки показателей качества
- •Линейная интегральная оценка
- •Метод Кулебакина
- •Апериодическая интегральная оценка
- •Особенности синтеза
- •Этапы синтеза сау
- •Желаемая лачх
- •Построение желаемой лачх
- •Синтез последовательных корректирующих устройств
- •Алгоритм построения сау с последовательными
- •Охват апериодического звена гибкой положительной обратной связью
- •Передаточная функция типовой одноконтурной системы
- •Тогда ошибка будет зависеть только от задающего воздействия
- •Ошибки статических и астатических систем при типовых задающих воздействиях
- •Ошибка при возмущающем воздействии, не равном нулю
- •Чувствительность параметров
- •Т иповые законы регулирования линейных систем
- •Описание сау методом пространства состояния
- •Схемы переменных состояний (спс)
- •Метод прямого программирования
- •Метод параллельного программирования
- •Метод последовательного программирования
- •Схемы переменных состояния типовых звеньев
- •Области применения методов программирования схем переменных состояния
- •Матрица перехода
- •Аналитический способ получения матрицы перехода
- •Получение матрицы перехода разложением в ряд
- •Получение матрицы перехода по схеме переменных состояния
Приближенное определение показателей качества по виду р() (Косвенный метод)
Близким по виду вещественным характеристикам Р() соответствуют близкие по виду переходные характеристики h(t).
При косвенных оценках вещественной характеристики Р() ограничиваются исследованием спектра частот П, при которых вещественная действительная характеристика Р() имеет положительное значение.
О тбрасываемая часть при частотах свышеПвлияет на начало переходной характеристикиh(t).
![]()
Е
сли
,
гдеп –
произвольное число, то
.
Это означает следующее: если рассмотреть
две характеристики, то
вещественной частотной характеристике с захватом наибольших спектров частот (более широкая переходная характеристика) соответствует менее длительный переходный процесс. Чем шире Р(), тем быстрее происходит затухание, т.е. тем меньше время переходного процесса.
Установившееся значение h() соответствует значению вещественной частотной характеристики при частоте =0
.
Если вещественная частотная характеристика Р() является монотонно убывающей функцией и Р()=0, то переходная характеристика имеет апериодический характер. Для апериодического процесса

В

.
Если Р() - является положительной невозрастающей функцией, то переходная характеристика имеет вид затухающих колебаний:

П

.
Если вещественная характеристика Р() имеет явно выраженный max
,
то
переходная характеристика будет иметь
вид затухающих колебаний и перерегулирование
.
Общим условием для немонотонности переходной характеристики (колебательности) является: частотная характеристика Р() на каком-то этапе должна быть меньше G(), которая определяется как
.
Здесь
- наибольшее целое число от деления.
Е
слиР() претерпевает разрыв, то система находится на границе устойчивости.
Склонность к колебаниям (hmax) тем выше, чем больше пик Pmax.
Для монотонного (апериодического переходного процесса) время переходного процесса составляет
.
Если Р() может быть аппроксимирована трапецией вида
т

.
Е
сли вещественную характеристикуР() можно разложить на ряд трапеций, то по параметрам трапеций можно определить перерегулирование по ординатам этих трапеций. Все трапеции должны быть прямоугольные.
,
где Pk() - значение высоты трапеции, имеющей на осях Р(), - положительное значение, Pi() - значение высоты трапеции, имеющей на осях Р(), - отрицательное значение.
Построение вещественной частотной характеристики с использованием
ЛАЧХ разомкнутой системы и номограмм
Рассмотрим структурную схему:
П
![]()

Данному уравнению на комплексной плоскости соответствуют кривые Р()=const, при этом по оу откладываются 20lgH, а по ох – фаза .

Алгоритм построения ВЧХ по номограмме
Строятся ЛАЧХ и ФЧХ разомкнутой системы.
Заполняется следующая таблица (первые три строки):
1
…
п
Ндб
Н1
…
Н2
1
…
2
Р
Строится ЛАФХ в масштабе номограммы.
Данная ЛАФХ накладывается на номограмму.
Точки пересечения ЛАФХ с кривыми номограммы определяют значение ВЧХ. Заполняем четвертую строку данной таблицы. Т.о. получаем затабулированную функцию Р().
Моделирование с использованием вычислительных средств
На сегодняшний день это самый широко используемый метод определения качества переходных процессов. В основе этого метода может лежать система дифференциальных уравнений (метод Эйлера, метод Рунге-Кутта любого порядка). В результате решения этой системы получается таблица значений, определяющая переходный процесс в системе. Другим способом моделирования является решение характеристического уравнения. Полученные корни характеристического уравнения определяют переходный процесс в операторном виде. Используя преобразования Лапласа, получаем переходный процесс во временном пространстве.
Достаточно развитое программное обеспечение предоставляет несколько пакетов (средств) моделирования (STRATUM; MATLAB; GPSS и др.).
СТАУ предлагает описание САУ в терминах пространства состояния. Описанные таким образом системы, ориентированы на применение вычислительных средств.
