Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Вопросы ЭиЭ.docx
Скачиваний:
11
Добавлен:
28.03.2015
Размер:
905.64 Кб
Скачать

Вопросы ЭиЭ

  1. Физические основы электроники

  К физической электронике относятся электронные и ионные процессы в вакууме, газах и полупроводниках, а также на поверхности раздела между вакуумом или газом и твердыми или жидкими телами.

Полупроводники занимают по электропроводности промежуточное положение между металлами (проводниками электрического тока) и диэлектриками.

В металлах зона проводимости непосредственно примыкает к валентной зоне. Электронам валентной зоны достаточно сообщить весьма малую энергию, чтобы перевести их в зону свободных уровней. Поэтому уже при воздействии только электрического поля в металле имеется большое число свободных (не связанных с атомами) электронов, которые и обеспечивают его высокую электрическую проводимость.

    В полупроводниках свободная зона отделена от валентной зоны запрещенной зоной энергии Wз. Величина Wз определяет энергию (в электрон-вольтах), которую нужно сообщить электрону, чтобы перевести его на нижний энергетический уровень в зоне свободных уровней. Необходимость сообщения достаточной энергии для преодоления запрещенной зоны затрудняет переход электронов и приводит к уменьшению его электрической проводимости. С повышением температуры проводимость чистых полупроводников возрастает.

        Диэлектрики отличаются от полупроводников более широкой запрещенной зоной. У них Wз>3 эВ и может достигать 6-10 эВ. В связи с этим проводимость диэлектриков мала и становится заметной лишь при температуре не ниже 400-800°С или сильных  электрических   полях  (пробой).

  1. Собственная проводимость

    

        Полупроводниками являются твердые тела, которые при Т=0 характеризуются полно­стью занятой электронами валентной зоной, отделенной от зоны проводимости сравнительно узкой запрещенной зоной

Собственными полупроводниками являются химически чистые полупроводники, а их проводимость называется собственной проводимостью. Примером собственных полупроводников мо­гут служить химически чистые Ge, Se, а также многие химические соединения: InSb, GaAs, CdS и др.

При 0 К и отсутствии других внешних факторов собственные полупроводники ведут себя как диэлектрики. При повышении же температуры электроны с верхних уровней валентной зоны I могут быть переброшены на нижние уровни зоны проводи­мости II. При наложении на кристалл электрического поля они перемещаются против поля и создают электрический ток. Проводимость собственных полупроводников, обусловленная электронами, называется электронной проводимостью или проводимостью n-типа (от лат. negative — отрицательный).

В результате тепловых забросов электронов из зоны I в зону II в валентной зоне возникают вакантные состояния, получившие название дырок. Во внешнем электричес­ком поле на освободившееся от электрона место — дырку — может переместиться электрон с соседнего уровня, а дырка появится в том месте, откуда ушел электрон, и т. д. Такой процесс заполнения дырок электронами равносилен перемещению дырки в направлении, противоположном движению электрона. Проводимость собственных полупроводников, обусловленная квазичастицами дырками, называется дырочной проводимостью или проводимостью p-типа (от лат. positive — поло­жительный).

Таким образом, в собственных полупроводниках наблюдаются два механизма проводимости: электронный и дырочный. Число электронов в зоне проводимости равно числу дырок в валентной зоне, так как последние соответствуют электронам, возбужденным в зону проводимости.

Проводимость полупроводников всегда является возбужденной, т. е. появляется только под действием внешних факторов (температуры, облучения, сильных электрических полей и т. д.).

                                        (242.2)

где E2энергия, соответствующая дну зоны проводимости (рис. 316), ЕFэнергия Ферми, Т — термодинамическая температура, С1 постоянная, зависящая от температуры и эффективной массы электрона проводимости. Эффективная масса — величина, имеющая размерность массы и характеризующая динамические свойства квазичастиц — электронов проводимости и дырок. Концентрация дырок в валентной зоне

                                        (242.3)

где С2 — постоянная, зависящая от температуры и эффективной массы дырки, Е1 энергия, соответствующая верхней границе валентной зоны. Энергия возбуждения в данном случае от­считывается вниз от уровня Ферми (рис. 316), поэтому величины в экспоненциальном множителе (242.3) имеют знак, обратный знаку экспоненциального множителя в (242.2).

т. е. уровень Ферми в собственном полупроводнике действительно расположен в середине запрещенной зоны.

Таким образом, удельная проводимость собственных полупроводников

                                                           (242.5)

где g0 — постоянная, характерная для данного полупроводника.

В полупроводниках наряду с процессом генерации электронов и дырок идет процесс рекомбинации: электроны переходят из зоны проводимости в валентную зону, отдавая энергию решетке и испуская кванты электромагнитного излучения.