
- •Кафедра «Компьютерные технологии в проектировании и производстве»
- •Пособие для студентов, обучающихся по направлению 210200 «Конструирование и технология электронных средств» дневной формы обучения
- •Введение
- •1 Основы теории электропроводности полупроводников
- •1.1 Общие сведения о полупроводниках
- •1.1.1 Полупроводники с собственной электропроводностью
- •1.1.2 Полупроводники с электронной электропроводностью
- •1.2 Токи в полупроводниках
- •1.2.1 Дрейфовый ток
- •1.2.2 Диффузионный ток
- •1.3 Контактные явления
- •1.3.1 Электронно-дырочный переход в состоянии равновесия
- •1.3.2 Прямое включение p-n перехода
- •1.3.3 Обратное включение р-п-перехода
- •1.3.4 Теоретическая вольтамперная характеристика p-n перехода
- •1.3.5 Реальная вольтамперная характеристика p-n перехода
- •1.3.6 Емкости p-n перехода
- •1.4 Разновидности электрических переходов
- •1.4.1 Гетеропереходы
- •1.4.2 Контакт между полупроводниками одного типа электропроводности
- •1.4.3 Контакт металла с полупроводником
- •1.4.4 Омические контакты
- •1.4.5 Явления на поверхности полупроводника
- •2 Полупроводниковые диоды
- •2.1 Классификация
- •2.2 Выпрямительные диоды
- •2.3 Стабилитроны и стабисторы
- •2.4 Универсальные и импульсные диоды
- •2.5 Варикапы
- •3 Биполярные транзисторы
- •3.1 Принцип действия биполярного транзистора. Режимы работы.
- •3.1.1 Общие сведения
- •3.1.2 Физические процессы в бездрейфовом биполярном транзисторе при работе в активном режиме.
- •3.2 Статические характеристики биполярных транзисторов
- •3.2.1 Схема с общей базой
- •3.2.2 Схема с общим эмиттером
- •3.2.3 Влияние температуры на статические характеристики бт
- •3.3 Дифференциальные параметры биполярного транзистора
- •3.4 Линейная (малосигнальная) модель биполярного транзистора
- •3.5 Частотные свойства биполярного транзистора
- •3.6 Способы улучшения частотных свойств биполярных транзисторов
- •3.7 Работа транзистора в усилительном режиме
- •3.8 Особенности работы транзистора в импульсном режиме
- •3.8.1 Работа транзистора в режиме усиления импульсов малой амплитуды
- •3.8.2 Работа транзистора в режиме переключения
- •3.8.3 Переходные процессы при переключении транзистора
- •4 Полевые транзисторы
- •4.1 Полевой транзистор с p-n переходом
- •4.2 Полевой транзистор с изолированным затвором (мдп-транзистор)
3.7 Работа транзистора в усилительном режиме
При работе транзистора в различных радиотехнических устройствах в его входную цепь поступают сигналы, например переменные напряжения. Под действием входного переменного напряжения изменяются входной и выходной токи транзистора.
Для выделения полезного сигнала в выходную цепь транзистора включают элементы нагрузки. В простейшем случае нагрузкой может служить резистор Rк. На резисторе нагрузки за счет прохождения выходного тока выделяется, кроме постоянного, переменное напряжение. Амплитуда этого напряжения зависит от амплитуды переменной составляющей выходного тока и сопротивления резистора Rк и может быть больше входного напряжения.
Простейшая схема усилителя на транзисторе, включенном по схеме с ОЭ, показана на рис. 3.13.
Коллекторная цепь состоит из резистора Rк и источника Ек, а цепь базы - из источников тока IБ0 и IБm Источник IБ0 обеспечивает положение исходной рабочей точке на участке характеристик с наименьшей нелинейностью. Источник IБm- источник сигнала. В качестве выходного используется переменное напряжение, выделяемое на резисторе нагрузки Rк (на коллекторе транзистора).
Рис. 3.13 Схема усилителя на БТ.
Работа такого усилителя поясняется временными диаграммами токов и напряжений, изображенными на рис. 3..
При IБm =0 токи базы и коллектора будут определяться токами в рабочей точке (IБ0, IК0)и напряжением на коллекторе UК0= ЕК-IК0 × Rк
Рис. 3.14 Временные диаграммы усилителя.
Во время положительного полупериода входного тока (рис. 3.14, а) прямое напряжение эмиттерного перехода увеличивается, что вызывает рост тока коллектора (рис. 3.14, б) и уменьшение напряжения UКЭ за счет увеличения падения напряжения на сопротивлении коллектора (рис. 3.14, в). Если работа происходит на линейных участках характеристик транзистора, то формы переменных составляющих токов базы и коллектора совпадают с формой входного напряжения, а переменное напряжение на коллекторе, обусловленной переменной составляющей коллекторного тока, оказывается сдвинутым относительно входного напряжения на 1800. При соответствующем выборе сопротивления нагрузки Rк амплитуда переменного напряжения на выходе такого усилителя Umвых=IКmRк может значительно превышать амплитуду входного напряжения. В этом случае происходит усиление сигнала. Расчет параметров усиления дан в типовых учебниках.
3.8 Особенности работы транзистора в импульсном режиме
3.8.1 Работа транзистора в режиме усиления импульсов малой амплитуды
Если транзистор работает в режиме усиления импульсных сигналов малой амплитуды, то такой режим работы в принципе не отличается от линейного усиления малых синусоидальных сигналов. Импульс в этом случае может быть представлен в виде суммы ряда гармонических составляющих. Зная частотные свойства транзистора, можно определить искажения формы импульсов, возникающие при усилении.
Схема импульсного усилителя не отличается от схемы усилителя гармонических сигналов (рис. 3.13).
3.8.2 Работа транзистора в режиме переключения
Биполярный транзистор широко используется в электронных устройствах в качестве ключа - функцией которого является замыкание и размыкание электрической цепи. Имея малое сопротивление во включенном состоянии и большое - в выключенном, биполярный транзистор достаточно полно удовлетворяет требованиям, предъявляемым к ключевым элементам.
Схема транзисторного ключа показана на рис. 3.15. Во входной цепи действуют источник смещения ЕБЭ, создающий обратное напряжение на эмиттерном переходе, источник управляющих импульсов прямого напряжения UВХ и ограничительный резистор RБ. Обычно RБ >> h11Э. В выходной цепи включены сопротивление нагрузки RК и источник питания ЕКЭ.
Рис. 3.15 Схема импульсного усилителя.
Когда нет импульса на входе, транзистор находится в режиме отсечки и ток коллектора практически отсутствует IК »IКБ0 (точка А на выходных характеристиках (рис. 3.16,б). Напряжение на выходе транзистора uКЭ= ЕКЭ-IК× RК » ЕКЭ.
а) |
б) |
Рис. 3.16 Зависимость входных (а) и выходных (б) токов БТ. |
При подаче на вход транзистора импульсов прямого тока
iБ = (UВХ - EБЭ)/RБ = IБ НАС,
транзистор открывается, рабочая точка перемещается в точку Б (режим насыщения) и напряжение на коллекторе падает до значения
uКЭ= ЕКЭ-IК НАС× RК = UКЭ ОСТ.
При дальнейшем увеличении тока базы ток коллектора не увеличивается (рис. 3.16,а) и напряжение на коллекторе не изменяется (рис. 3.16, б).