Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

AndAllThatInter / СмолинНеприятнСФизй

.pdf
Скачиваний:
19
Добавлен:
27.03.2015
Размер:
3.13 Mб
Скачать

поле можно было бы сказать, движется оно или нет.

Здесь конфликт между двумя унификациями, обе из которых являются центральными в ньютоновской физике: унификация всего как материи, подчиняющейся законам Ньютона, против унификации движения и покоя. Для многих физиков ответ был очевиден: идея материальной вселенной была более важна, чем, возможно, второстепенный факт, что тяжело регистрировать движение. Но несколько физиков определили принцип относительности как более важный. Одним из них был юный студент, обучавшийся в Цюрихе, по имени Альберт Эйнштейн. Он размышлял над загадкой около десяти лет, начав в возрасте 16 лет, и, наконец, в 1905 осознал, что ответ требует полного пересмотра наших представлений о пространстве и времени.

Эйнштейн решил загадку, сыграв в тот же самый великий трюк, в который исходно играли Галилей и Ньютон, чтобы установить относительность движения. Он осознал, что различие между электрическими и магнитными эффектами зависит от движения наблюдателя. Так что унификация Максвелла оказалась глубже, чем даже подозревал сам Максвелл. Электрическое и магнитное поля не только были различными аспектами одного явления, но и различные наблюдатели проводили бы это различие по-разному; это означает, что один

наблюдатель может объяснять некоторое явление в терминах электричества, в то время как другой наблюдатель, движущийся относительно первого, мог бы объяснить то же самое явление в терминах магнетизма. Но оба согласятся по поводу того, что происходит. Так родилась специальная теория относительности (СТО) Эйнштейна как объединение галилеевской унификации покоя и движения с максвелловской унификацией электричества и магнетизма.

Из этого многое следует. Одно следствие в том, что свет должен иметь универсальную скорость, независимую от движения наблюдателя. Другое в том, что должна иметь место унификация пространства и времени. Ранее имелось явное различие: время было универсальным, и каждый согласился бы с тем, что понимается под одновременным происхождением двух событий. Эйнштейн показал, что наблюдатели, двигающиеся по отношению друг другу, будут не согласны с тем, произошли ли два события в разных местах в одно и то же время или нет. Это объединение подразумевалось в его статье 1905 года, озаглавленной «К электродинамике движущихся тел», и было установлено явно в 1907 одним из его учителей, Германом Минковским.

Итак, тут мы опять имеем историю двух соревнующихся попыток унификации. Механицисты имели прекрасную идею, которая объединит

физику: все сущее есть материя. Эйнштейн поверил в другой вид объединения: в унификацию движения и покоя. Чтобы поддержать это, он придумал еще более глубокую унификацию – пространства и времени. В каждом случае нечто, что раньше мыслилось как абсолютно различное, становилось различным только относительно движения наблюдателя.

В самом конце конфликт между двумя предложениями унификации был урегулирован экспериментом. Если вы верили механицистам, вы поверили бы, что наблюдатель мог бы измерить свою скорость через эфир. Если вы верили Эйнштейну, вы знали бы, что этого не могло быть, так как все наблюдатели эквивалентны.

Несколько попыток обнаружить движение Земли через эфир были сделаны перед 1905, когда Эйнштейн предложил СТО, и они провалились.[9] Защитники теории эфира все корректировали свои предсказания так, чтобы сделать тяжелее и тяжелее обнаружение движения Земли через эфир. Это было легко сделать, поскольку, когда они проводили свои расчеты, они использовали теорию Максвелла, которая, когда она корректно интерпретируется, согласуется с ожиданиями Эйнштейна, что эфирное движение не детектируемо. Это означает, что механицисты уже имели правильные уравнения, они только имели неправильные интерпретации.

Что касается самого Эйнштейна, неясно, насколько он был осведомлен о ранних экспериментах, но они не могли иметь для него значения, поскольку он уже убедился, что эфирное движение Земли не детектируемо. Эйнштейну, фактически, оставалось только взяться за дело. Как мы увидим в следующей главе, его унификация пространства и времени была подвергнута углубленному рассмотрению. Со временем большинство физиков согласились с ним и признали СТО, при этом сам Эйнштейн уже ушел далеко за ее пределы.

3. Мир как геометрия

Первые десятилетия двадцатого века показали несколько попыток унификации. Немногие удались, остальные потерпели неудачу. Коротко ознакомившись с их историями, мы можем извлечь урок, который поможет нам понять кризис современных попыток унификации.

От Ньютона до Эйнштейна доминировала одна идея: мир сделан ни из чего другого, как из вещества. Даже электричество и магнетизм были аспектами вещества – просто искажениями эфира. Но эта красивая картина была разрушена с триумфом СТО, ибо если целое понятие быть в

покое или в движении является бессмысленным, эфир должен быть фикцией.

Поиски унификации велись тут и там, но на самом деле было только одно направление движения. Это была противоположность теории эфира: если поля не сделаны из вещества, вероятно, поля являются фундаментальной материей. Материя тогда должна быть сделана из полей. Уже были модели электронов и атомов как напряжений в полях, так что это был не такой уж большой шаг.

Но как раз, когда эта идея приобретала приверженцев, все еще оставались загадки. Например, имелось два различных вида полей, гравитационное поле и электромагнитное поле. Почему два поля, а не одно поле? И конец ли это истории? Стремление к унификации вынудило физиков спросить, не являются ли гравитация и электромагнетизм сторонами одного явления. Таким образом родились поиски того, что мы сегодня называем единой теорией поля.

Поскольку Эйнштейн только что встроил электромагнетизм в свою СТО, самым логичным путем продолжения было модифицировать ньютоновскую теорию гравитации так, чтобы сделать ее согласующейся с СТО. Это оказалось легко сделать. И не только это, эта модификация привела к чудесному открытию, которое стало ядром единых теорий до сегодняшнего дня. В 1914

финский физик по имени Гуннар Нордстрѐм нашел, что все, что вам нужно было сделать, чтобы объединить гравитацию и электромагнетизм, это нужно было повысить размерность пространства на единицу. Он написал уравнения, которые описывали электромагнетизм в мире с четырьмя измерениями пространства (и одним измерением времени), а вылезла гравитация. Только за счет дополнительного пространственного измерения вы получаете унификацию гравитации и электромагнетизма, которое, к тому же, совершенно согласуется с СТО Эйнштейна.

Но если это верно. Не должны ли мы быть в состоянии видеть в этом новом измерении, как мы видим в трех пространственных измерениях? Если нет, не является ли тогда теория, очевидно, неправильной? Чтобы избежать эту мучительную проблему, мы можем сделать новое измерение круговым, так что, когда мы глядим в него, мы на самом деле путешествуем вокруг него и возвращаемся на то же место.[10] Тогда мы можем сделать диаметр круга очень маленьким, так что тяжело увидеть, что дополнительное измерение вообще здесь есть. Чтобы понять, как сжатие чегонибудь может сделать невозможным его наблюдение, напомним, что свет состоит из волн и каждая световая волна имеет длину волны, которая равна расстоянию между пиками. Длина волны света устанавливает предел, насколько маленькую

вещь вы можете увидеть; для вас нельзя различить объект, меньший, чем длина волны света, который вы используете, чтобы смотреть на него. Поэтому нельзя обнаружить существование дополнительной размерности, меньшей, чем длина волны света, которую можно ощутить.

Можно подумать, что Эйнштейн, как и все люди, мог бы воспользоваться этой новой теорией. Но в это время (1914) он уже двигался по совершенно другой дороге. В отличие от своих современников Эйнштейн выбрал маршрут к унификации гравитации с относительностью, который привел его назад к самому основанию принипа относительности: к унификации движения и покоя, открытой Галилеем несколькими столетиями ранее. Эта унификация касается только равномерного движения – это означает, движения по прямой линии с постоянной скоростью. Начав около 1907, Эйнштейн сначала задал себе вопрос о других типах движения, таких как ускоренное движение. Это движение, скорость или направление которого изменяются. Не должно ли различие между ускоренным и неускоренным движением быть неким образом уничтожено?

Сначала это кажется ошибочным шагом, ведь в то время, как мы не можем чувствовать равномерное движение, мы определенно чувствуем эффекты ускорения. Когда самолет отрывается от земли, мы чувствуем, как нас вдавливает назад в наши

сидения. Когда лифт начинает подниматься, мы чувствуем ускорение в форме дополнительного давления, вжимающего нас в пол.

Именно в этом моменте Эйнштейн сделал свое наиболее экстраординарное прозрение. Он осознал, что эффекты ускорения неотличимы от эффектов гравитации. Подумаем о женщине,

стоящей в лифте в ожидании, когда он тронется. Она уже чувствует силу, вдавливающую ее в пол. То, что происходит, когда лифт начинает подниматься, не отличается по виду, а только по степени: Она чувствует ту же самую силу, но возросшую. Допустим, что лифт все еще стоит, но сила тяжести моментально возросла. Эйнштейн осознал, что она будет чувствовать в точности то же самое, как если бы лифт двигался с ускорением вверх.

Имеется и обратное к сказанному утверждение. Допустим, что трос, удерживающий лифт, перерезан и кабина вместе с находящимися в ней начинает падать. В свободном падении пассажиры лифта будут чувствовать невесомость. Они будут чувствовать точно то, что чувствует астронавт на орбите. Таким образом, можно сказать, что ускорение падающего лифта может точно ликвидировать эффекты гравитации.

Эйнштейн напомнил наблюдение, что персона, падающая с крыши здания, не будет чувствовать

никакого воздействия гравитации, пока она падает. Он назвал это «самой удачной мыслью моей жизни», и оформил ее в виде принципа, который он назвал принципом эквивалентности. Он гласит,

что эффекты ускорения неотличимы от эффектов гравитации.[11]

Так Эйнштейн преуспел в унификации всех видов движения. Однородное движение не отличимо от покоя. И ускорение не отличается от состояния покоя, но в приложенном гравитационном поле.

Объединение ускорения с гравитацией было унификацией с великими следствиями. Даже до того, когда концептуальные выводы были выработаны, имелись гигантские последствия для эксперимента. Некоторые предсказания могли бы даже быть выведены из вузовской алгебры – например, что часы будут замедляться в гравитационном поле, что было со временем подтверждено. Другое предсказание, – впервые сделанное Эйнштейном в 1911, – было в том, что свет отклоняется, когда он проходит через гравитационное поле.

Отметим здесь, что, как и в успешных унификациях, обсуждавшихся ранее, одновременно происходит более, чем одно объединение. Объединяются два различных вида движения; больше нет необходимости проводить различие между равномерным и ускоренным движениями. И

эффекты ускорения объединяются с эффектами гравитации.

Даже если Эйнштейн мог иметь основания для нескольких предсказаний из принципа эквивалентности, новый принцип не был завершенной теорией. Формулирование полной теории было величайшей задачей его жизни и потребовало для завершения около десяти лет. Чтобы увидеть, почему так, попытаемся понять, что означает сказать, что гравитация изгибает световые лучи. До этого особого прозрения Эйнштейна всегда и всюду имелись два вида вещей: вещи, которые живут в пространстве, и само пространство.

Мы не привыкли размышлять о пространстве как о сущности со своими собственными свойствами, но они определенно есть. Пространство имеет три измерения, а также оно имеет определенную геометрию, которую мы изучаем в школе. Названная евклидовой геометрией – по имени Евклида, который разработал ее постулаты и аксиомы более двух тысяч лет назад, – она представляет собой изучение свойств самого пространства. Теоремы евклидовой геометрии говорят нам, что происходит с треугольниками, окружностями и линиями, проведенными в пространстве. И они относятся ко всем объектам, материальным и воображаемым.