Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Перевод МММ / 3_%%%% 0648bacc A Study of Nonequilibrium Diffusion Modeling-

.pdf
Скачиваний:
12
Добавлен:
27.03.2015
Размер:
511.6 Кб
Скачать

For individual use by an IEEE Electron Devices Society member purchasing this product.

658

1022

FURNACEANNEALING

900

C

. . . . , . . . . I

I . I .

J I - 7

, I - , . .

1 0 2 2

. .

FURNACEANNEALING

900 C

 

, . , . . . , , . . . , , . .

, . I

I . . .

.... ... Experiments

Sirnulot on

(new model)

IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 39, NO 3, MARCH 1992

0.4

0.5 00.0.8.76

0.9

I

1 . 1

1.2

 

V E E

( V )

 

 

 

Flg. I I . Collector and base currents as a function of base-emitter voltage. Vcb = 0 V , emitter area is 2.2 X 20 pm2, and emitterresistance RE = 7 0.The doping profiles used in these simulations have been reportedin Fig.

9.

tailed models for this simulation have been described in [44], [45]. Fig. 1 I shows the Gummel plots using the profiles reported in Fig. 9. As expected from the doping profiles, the new model offers a better way to reproduce the actual results.

m

0.1

0.2

0.3

0.4

0.5

 

 

D e p t h

lprn)

 

 

(b)

Fig. 9 . Simulated arsenic andboron profiles in the case of 900°C furnace annealing and companson with experimental results (SIMS). (a) Using the. standardmodel. (bj Using thenonequilibrium model.

...-

Fig. I O . Forthe simulateddopingprofilefrom Fig.9(b), concentrations of the different species, atthe end of the simulation.

C. Two-DimensionalBehavior

 

Withthehelp

of asteady-stateformulation,

it was

shown that two-dimensional profiles can be dramatically affected by the inclusion of point defects, for boron and phosphoruspredeposition [lo]. Thesamekind of result has been observed with the present model.However, there

is only a single report dealing with the effect

of ion-im-

plantationdamageonlateraldiffusion,whichanalyzed

qualitativelythechanges

in junctionprofilesfortwo

MOSFETstructures [37]. In order tostudyinaprecise mannerpossibletwo-dimensionaleffects,thefollowing simulationhasbeenperformedwiththepresentmodel:

boron wasimplantedatadoseandenergyof4

X I O l 3

at/cm2 and 20 keV, and annealed at 800°C for

10 min.

From the resultsof the previous section, this is oneof the cases where anomalous diffusion is the most remarkable. A 2 pm X 2 pm mesh was used and boron was implanted using amask at x = 1.6 pm. As theareaofinterestis located near the top surface, and as the point-defect distributions are mainly determined by the interactions with dopants, this mesh is sufficient. It was confirmedby com-

paringtheresultswiththoseobtained

by usinga

20 pm

X 20 pm mesh.

 

 

Fig. 12 displaystheboroncontours

at theend

of the

simulation. Tee maximum vertical displacement ison the order of 6T A, whereas the lateral displacement is only about 320 A . Hence, as in the case of predeposition, the

surfaceeffectslimitthesupersaturation

of pointdefects

andthuslimittheamountofanomalousdiffusion

in the

lateraldirection.Anotheroriginalpointcan

be

seen in

ACKNOWLEDGMENT
The authors wish to thank Dr. H. Amakawa for useful discussions,aswellas Dr. S. OngaandT.Okadafor allowing the use of their experimental results about phosphorus diffusion. Continuous support from Dr. K. Natori isgratefullyacknowledged.Thefirstauthorwouldalso

For individual use by an IEEE Electron Devices Society member purchasing this product.

MODELlNtiDIFFUSIONNONEQUILIBRIUMBACCUSOF et 01.: STUDY

659

-o‘81.Z

I 4

1.6

1.8

20

 

 

X Imicronsl

 

 

Fig. 12. Boron contours alier 10 nun of diffusion at 800°C

-2.0

0 5

I O

15

2 0

0

X (mlcronsl

Fig. 13. Vacancy contours after 0.05 s of diffusion. The insert shows the distnbutlon of some species in a lateral cross section at y = -0.1 pm.

Good agreement is obtained as a function of temperature, time, and type of dopant. From the calculation, it is also deduced that a precise knowledge of the ramp-up conditions is needed if quantitative results are expected about thedisplacement.Theinfluenceofthechoice ofinitial defectdistributionshasbeenalsodiscussed.Itisshown

that for low-dose experiments, using the results fromMC calculationsslightlyoverestimatestheanomalousdiffusion. For high-dose arsenic implants, it seems sufficient, as a first approach,tousesimplythedopant-implanted profile for the defect distributions. Two-dimensional calculationssuggestthattheanomalousdisplacements due to ion-implantation damage differ significantly in the lateral and vertical directions.

Finally,this kindofmodel seemsverypromisingfor investigationoftheproblemsarisingin ULSI technologies. For example,phenomenalike(pre)amorphization, solid-phase epitaxy, and solid solubilities exceeding equi- libriumvaluesduringlow-temperatureannealing,might beinvestigatedwhenusing an extendedversion of the workpresentedhere.Thissophisticatedmodelinglevel

can also help greatly in defining the range of validity of

eachdiffusionformulation,whenapplied

toveryshort

time annealing.

 

Fig. 12: as the initial gradient of the point defects is ex-

tremely large in the vicinity of the top surface, higher vallike to thank Dr.D. Collard and Dr. E. Dubois from ISEN

uesofdopantconcentrations

arepredictedinthisarea.

for their support and encouragement.

 

 

 

This is in fact the same type of phenomenon as

reported

 

 

 

 

 

 

 

 

 

in [ 9 ] , [111 and referred to as “up-hilldiffusion.” In these

 

 

REFERENCES

 

 

 

references,thegradientofinterstitialswasduetosome

[I] C. P . Ho, J. D. Plummer, S . E. Hansen, and R. W . Dutton, “VLSI

recombination term in a damage layer (amorphousicrys-

 

process modeling-SUPREM

Ill,” IEEE T r a m ElectronDevices,

talline interface). Here thiseffect is observed near the sur-

 

vol. ED-30. pp. 1438-1453.

1983.

 

 

 

 

 

faceand

mainly. occursforlow-temperatureconditions

[ 2 ] R . B . Fair and G . A. Ruggles, “Thermal

budget issues for deep sub-

(typicallyaround 8O0”C-85O0C).Thiscouldbeimpor-

 

micron ULSI.” Solid-StateTechno/., pp. 107-113, May 1990.

 

[3]

A . E. Michel. W . Rausch, P. A. Ronsheim, and R. H. Kastl, “Rapid

tantwhenconsideringthechannelprofileinadvanced

 

 

annealing and the anomalous diffusion of ion implanted boron into

MOS technologies which use now this range of tempera-

 

sllicon,” Appl. t‘hys. Letr.. vol. 50, no. 7. pp. 416-418, Feb. 16,

tures. Finally, Fig.

13 shows the vacancy contours during

 

1987.

 

 

 

 

 

 

 

[4]

M. Norishima, Y.Niitsu, G. Sasaki, H. Iwai. and K. Maeguchi, “Bi-

the beginning of diffusion, after 0.05 s. The decrease of

 

polartransistor

design for

low process-temperature

0.5 pm

Bi-

vacancynearthesurface

is obvious,andthere

isalsoa

 

CMOS.” in IEDM Tech. D i g . , Dec. 1989, pp. 237-240.

and

significantlowering

in theregionof high boron/intersti-

[51 P. M.Fahey,P.

B. Griffin, and J. D. Plummer,“Pointdefects

 

dopant ditfuslon

In sllicon,”

Rev.Mod.

Phys.. vol 61, no. 2,

pp.

tial pair concentrations. This is partially due to direct re-

 

289-384, Apr. 1989.

 

 

 

 

 

 

combination with interstitials,andmainlydue

to there-

[6]

D. Collard and K . Taniguchi. “IMPACT-A

point-defect-based two-

action (4). This effect has been already reported

for one-

 

dimensional process simulator: Modeling the lateral oxidation-en-

 

hanced diffusion of dopants in silicon,”

IEEE Trans.ElectronDe-

dimensional calculations in[17] and is also carefully taken

 

vices, vol. ED-33. no. 10, pp. 1454-1462, Oct. 1986.

 

into account here.

 

 

 

[7]

M. E. Law and R . W . Dutton, “Venficatlon

of analytic point defects

 

 

 

 

 

 

models using SUPREM IV,” IEEE Truns. Computer-Aided Des., vol.

 

 

 

 

 

 

7, no. 2 , pp. 181-190. Feh. 1988.

 

 

 

 

 

 

 

V . CONCLUSIONS

 

[8]

D.Mathlot and J . C . Pfister,“Dopant

diffusion in silicon: A con-

In addition to a precise physical insight into the diffu-

 

sistent view involving non-equilibrium

defects.” J. Appl. Phys., vol.

 

5 5 . no. I O , pp. 3518-3530.

May 15,

1984.

 

 

 

sion mechanisms, the detailed inclusion of point defects

[9]

M. Orlowski, “Unified model for impunty diffuslon in silicon,” Appl.

under nonequilibrium condition allows to explain the ef-

 

Phys. Lett., vol. 53, no. 14, pp. 1323-1325,

Oct. 3 ,

1988.

 

[IO]

E.Rorris, R. R. O’Brien, F. F. Morehead, R . F. Lever, J. P. Peng,

fects of

ion-implantationdamageondopantdiffusion.

 

and G. R. Srinivasan, “A new approach to the simulation of the cou-

For individual use by an IEEE Electron Devices Society member purchasing this product.

660

IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 39, NO, 3, MARCH 1992

 

pled pointdefectsandimpuritydiffusion,”IEEETrans.Compurer-

 

AidedDes.,vol.

9, no. 10, pp. 1113-1122, Oct. 1990.

 

1111

M. Orlowski,“Impurity

and pointdefectredistribution in thepres-

 

enceofcrystaldefects,” in IEDM Tech. Dig . , Dec. 1990, pp. 729-

[I21

731.

 

 

 

 

 

 

 

 

 

F. F. Morehead and

R. F. Lever,

“A steady-state model for coupled

 

defect-impurity diffusion in silicon,”J. Appl. Phys., vol. 66, no. 1 I ,

 

pp. 5349-5352,

Dec. 1,

1989.

 

 

 

 

1131

S . M. Hu, P. Fahey, and R. W.Dutton,

“On models of phosphorus

 

diffusion in silicon,” J . Appl. Phys., vol. 54, no. 12, pp. 6912-6922,

 

Dec. 1983.

 

 

 

 

 

 

 

 

[14] W.B. Richardson and B.J. Mulvaney,“Plateau and kinkin

P pro-

 

filesinto Si: A result of strongbimolecularrecombination?”

Appl.

[I51

Phys. Lett., vol. 53, no. 20, pp.

1917-1919, Nov. 14, 1988.

 

-,

“Non-equilibriumbehavior

of chargedpointdefectsduring

 

phosphorusdiffusion in silicon,”

J. Appl. Phys., vol. 65, no. 6, pp.

 

2243-2247, Mar. 15. 1989.

 

 

 

 

 

1161

B. J. Mulvaney and W. B. Richardson, “The effect of concentration-

 

dependent defect recombination reactions on phosphorus diffusion in

 

silicon,” J . Appl. Phys.,vol.

67, no. 6, pp.

3197-3199, Mar. 15,

 

1990.

 

 

 

 

 

 

 

 

 

1171

T.L.Crandle,W.B.

Richardson,and

B. 1. Mulvaney, “A kinctic

 

model

foranomalousdiffusionduringpost-implantannealing,”

in

 

IEDM Tech. Dig., Dec. 1988, pp. 636-639.

 

 

1181

M. Heinrich, M. Budil, and H. W. Potzl, “Simulation of arsenic and

 

borondiffusionduringrapidthermalannealing

in silicon,” in Proc.

 

ESSDERCPO ConJ, W . Ecclestonand

P. 1. Rosser, Eds.(Not-

 

tingham,UK,Sept.

1990). pp. 205-208.

 

 

1191 G. Hobler, S. Halama, K. Wimmer, S . Selberherr, and H. W. Potzl,

 

“RTA-simulations

with the 2D process simulator PROMIS,”

in NU-

 

PADIII(Hawaii,

June 3-4,1990). pp. 13-14.

 

 

[20] C. S . Nichols, C. G . Vande

Walle, and S . T. Pantelides, “Mecha-

 

nisms of dopant impurity diffusionin silicon,” Phys. Rev. B, vol. 40,

 

no. 8. pp. 5484-5496, Sept.

15.

1989.

 

 

 

[21]

N.E.B.

Cowern, K.T.F.Janssen,G.

F . A. van de Walle, and D.

 

1 . Gravesteijn,“Impuritydiffusion

viaan intermediatespecies:The

 

B-Si system,” Phys. Rev. Lerr., vol, 65, no. 19, pp. 2434-2437, Nov.

 

5 , 1990.

 

 

 

 

 

 

 

 

[22]

N. E. B.Cowern,“General

model forintrinsicdopantdiffusion in

 

silicon under nonequilibrium point-defect conditions,”J. Appl. Phys.,

 

vol. 64, no. 9 , pp, 4484-4490, Nov. 1 ,

1988.

 

 

[23]W. liingling. P. Pichler, S . Selberherr, E. Guerrero, and H. W. Potzl. “Simulation of critical IC fabrication pmcess using advanced physical and numerical methods.” IEEE Trans. Electron Devices. vol. ED-

32, no. 2, pp. 156-167,

Feh.

1985.

 

 

 

[24] B.Baccus.E.Dubois.

D. Collard. and D. Morel.“Efficienttwo-

 

dimensionalmultilayerprocesssimulation

of

advancedbipolarde-

vices,”Solid-StateElectron.,vol. 32. no. l l,pp. 1013-1023, Nov.

1989.

D.Collard, E. Dubois,andD.Morel,“IMPACT4-A

 

B.Baccus.

 

general two-dimenslonal multilayer process simulator,” in Proc. SIS-

DEP 111 Con$, G . BaccaraniandM.Rudan,Eds.(Bologna,Italy,

 

Sept. 1988). pp. 255-266.

 

 

 

 

N.Shigyo,

S . Nakamura, T.Wada, and S . Yasuda, Mar. 1990, un-

published.

 

 

 

 

 

 

G. B. Bonner and 1 . D. Plummer,“Gettering

of goldinsilicod:

A

tool fur understanding the propertiesof sllicon interstitials,” J . Appl.

Phys., vol. 61, no. 12, pp. 5286-5298,

June15, 1987.

 

W . A. Orr Arienzo,R.Glang,

R. F. Lever, R. K . Lewis,and F. F.

Morehead,“Borondiffusioninsiliconathighconcentrations,”

J .

Appl. Phys., vol. 63, no. I , pp. 116-120, Jan. I , 1988. M.Hirata,M.Hirata,and H. Saito.“Theinteractions of pointdefectswithimpurities in silicon,” J . Phys. Soc. Jupan,vol. 27, pp.

405-414,1969.

D.A. Antonladis and I. Moskowitz, “Diffusion of substitutional im-

purities in silicon at short oxidation times: An insight into point defect kinetics,” J.Appl. Phys., vol. 53, no. IO, pp. 6788-6796, Oct. 1982.

[31] B.Lojek,“CAD of processesforsdiconhighspeeddevices,” in Pror. 1990 VLSI ProcesslDevice Modeling Workshop (Kawasaki, Ja- pan,Aug. l990), pp. 118-121.

[32]U. Gosele, F. Morehead, w . Frank, andA. Seeger,“Diffusionof gold in silicon: A new model,” Appl. Phys. L e u , vol. 38, no. 3, pp.

157-159, Feh.1, 1981.

[33]F. Lau, “Modeling of polysilicon diffusion sources,” in fEDM Tech.

Dig., Dec. 1990, pp. 737-740.

1341 P. Fahey, R. W. Dutton,and

S . M. Hu, “Supersaturation of self-

interstitials and undersaturation

of vacancies during phosphorus dif-

interstitials and undersaturation of vacancies during phosphorus diffusion in silicon,”Appl.Phys. Lerr., vol. 44, no. 8, pp. 717-779,

Apr. 15, 1984.

1351 B. J . Mulvaney, W. B. Richardson,and T. L. Crandle,“PEPPER-

A process simulator for VLSI,” lEEE Trans. Compurer-Aided Des.. vol. 8, no. 4, pp. 336-349, Apr. 1989.

1361 T. K. Okada, S . Kambayashi, S. Onga, 1. Mizushima, K.Yamabe, and J . Matsunaga,“Non-equilibriumdiffusionprocessmodeling

based on three-dimensional simulator and a regulated point-defect injectionexperiment,” in IEDM Tech. D i g . , Dec. 1990, pp. 733-736.

[37]M. E.Law and 1. R.Pfiester,“Low-temperatureannealingofar- senieiphosphorus junctions,” IEEE Trans. Electron Devices, vol. 38, no. 2, pp. 278-284, Feb. 1991.

[38]R.B . Fair, J. J. Wortman,and 1. Liu, “Modeling rapid thermaldif-

fusionofarsenicandboron

in silicon,”

J . Elecrrochem. SOC.,vol.

131, no. 10, pp. 2387-2394, Oct. 1984.

 

 

 

 

 

 

M. Norishima, H. Iwai, Y. Niitbu, and K. Maeguchi, “Impurity dif-

 

fusion behavior of hipolar transistor under low-temperature furnace

 

annealing End high-temperature RTA and their optimization

for 0.5-

pm Bi-CMOS process,’’ IEEE Trans. Electron Devices, vol.

39, no.

I , pp. 33-40, Jan. 1992.

 

 

 

 

 

 

 

 

G. Hobler and S.Selberherr. “Two-dimensional modeling of

ion im-

plantation induccd point defects,“IEEE Trans. Computer-AidedDes.,

vol. 7, no. 2, pp.

174-180, Feb. 1988.

 

 

 

 

 

 

D.Fink, 1. P. Biersack, H. D.Cartanjen,

F. Jahnel, K. Muller,H.

Ryssel, and A. Osei, “Studies

on the lattice position of boron in sil-

icon,” RadiationEfects,vol.

77, pp. 11-33,

1983.

 

 

 

N. E.B.Cowern,

K. T. F. Janssen,and

H. F. F. Jos,

”Transient

diffusion of ion-implanted B i n Si: Dose, time,andmatrixdepen-

 

dence of atomic and electrical profiles.” J. Appl. Phys., vol. 68, no.

12, pp. 6191-6198, Dec. IS, 1990.

 

 

 

 

 

 

 

N. Shigyo, K . Sato,K.Kato,andT.Wada,“TRIMEDES:Atrian-

 

gular mesh device simulator linked with topographylprocess simula-

tion,”Trans.Insr.Electron.Insr.Electron.

Inform.Commun.

E n g . ,

vol. E71, no. IO,

pp. 992-999, Oct. 1988.

S . Yasuda,“Minority

N. Shigyo, H. Tanimoto, M. Norishima.and

camer mobility model for device simulation,” Solid-Srure Electron.,

vol. 33, no. 6, pp. 727-731,

June 1990.

 

 

 

 

 

 

N. Shigyo, N. Konishi, H. Satake.andY.Niitsu,

“A new bandgap

narrowing model based on corrected intrinsic camer concentration,”

presented at the

1991 VLSIProcessiDeviceModelingWorkshop,

 

Oiso,Japan, May 1991.

 

 

 

 

 

 

 

 

 

Bruno Baeeus wasbornin

Lille. France,

on Oc-

 

tober 6 , 1962. He receivedtheingenieurdegree

 

 

from the lnstitut Superieur d’Electroniquedu Nord

 

(ISEN), Lille,in

I985 and theDoctorat en Elec-

 

troniquedegree

from the,UniversityofLille

in

 

1990. His thesis dcalt with two-dimensional mul-

 

tilayer process simulation.

 

 

 

 

 

 

From May 1990 to May 199 I ,

he was a Visiting

 

Scientist attheToshiba

ULSI Research

Center,

 

Kawasaki, Japan, on leave from ISEN.He worked

 

on processmodelingofRTAanditsapplication

 

IO bipolar technologies. His research interests center

on process modeling

and shallow junction formation.

 

 

 

 

 

 

 

 

 

Tetsunori Wada (A’88)was bornin

Kamakura,

 

Japan, in

1951. HereceivedtheB.S.degree

in

 

appliedphysicsfromtheUniversity

 

of

Tokyo,

 

Tokyo,Japan, in

1975.

 

 

 

 

 

 

He then joined the Toshiba Corporation where

 

 

he wasengaged

indevelopingmicrolithography

 

 

technology from 1975 to 1981. He is currently en-

 

gaged in the numerical modeling

of semiconduc-

 

tor devices at the ULSI Research Center.

 

 

 

Mr. Wada isamember

of theJapanApplied

 

 

Physics Society.

 

 

 

 

 

 

 

For individual use by an IEEE Electron Devices Society member purchasing this product.

BACCUS et 01.: STUDY MODELINGOF NONEQUILIBRIUMDIFFUSION

Naoyuki Shigyo (M’89-SM’90) wab born in Nagasaki,Japan, on March10,1955.Hereceived

the B . S . degree in electronicsengineeringfrom ChibaUniversity,Chiba,Japan.in1977 and the M.S. degree in information science and the Ph.D. degree from Tohoku University, Sendai, Japan, In 1980 and 1988, respectively. His dissertation was on three-dimensional simulation of VLSI devices.

In 1980,hejoinedtheToshibaResearch

and

DevelopmentCenter,ToshibaCorporation,

Ka-

wasaki,Japan.Hehas

been engazed in thenu-

66 I

Kazumi Inou was born in Yamaguchi Prefecture.

Japan,in 1963. He receivedtheB.S.degree

in

appliedphysicsfromtheScienceUniversity

of

Tokyo in 1986 and the M.E. degree from the To- kyo Institute of Technology m 1988.

In 1988, he joined the Toshiba ULSI Research Center,ToshibaCorporation,Kawasaki,Japan, where he has been engaged in advancedBIPOLAR technology.