
- •Конспект лекций для 1 семестра изучения курса «Физика»
- •Абсолютная температура и её физический смысл
- •Электромагнетизм
- •Описание поля в магнетиках
- •Ферромагнетики. Магнитный гистерезис. Применения ферромагнетизма. Природа ферромагнетизма
- •1. Основные понятия кинематики
- •2. Перемещение точки и пройденный путь. Скорость. Вычисление пройденного пути
- •3. Ускорение при криволинейном движении
- •4. Кинематика вращательного движения
- •5. Первый закон Ньютона. Инерциальные системы отсчета. Принцип относительности Галилея
- •6. Масса тела. Сила. Второй и третий законы Ньютона
- •7. Сила тяжести. Вес тела. Перегрузки. Невесомость
- •8. Импульс тела. Импульс силы. Закон сохранения импульса
- •9. Механическая работа и мощность
- •10. Кинетическая и потенциальная энергия
- •11. Закон сохранения полной механической энергии
- •12. Основные положения молекулярно-кинетической теории и их опытное обоснование. Масса и размеры молекул
- •13. Идеальный газ. Основное уравнение мкт идеального газа
- •Формулу основного уравнения мкт идеального газа можно представить в виде
- •14. Абсолютная температура и её физический смысл
- •15. Газовые законы. Графики изопроцессов.
- •16. Состояние системы. Процесс. Первый закон (первое начало) термодинамики
- •17. Тепловые двигатели
- •Второе начало термодинамики
- •Электромагнетизм
- •1. Электризация тел. Закон сохранения электрического заряда. Закон Кулона
- •Любой заряд, больше элементарного, состоит из целого число элементарных зарядов
- •2. Электрическое поле. Напряженность электрического поля. Принцип суперпозиции электрических полей
- •3. Работа сил электростатического поля. Потенциал электростатического поля
- •4. Связь между напряженностью электростатического поля и потенциалом
- •5. Проводники в электростатическом поле. Явление электростатической индукции. Диэлектрики в электростатическом поле
- •6. Электроемкость. Конденсаторы. Емкость плоского конденсатора
- •7. Соединение конденсаторов. Энергия заряженного конденсатора
- •8. Закон Ома для однородного участка цепи. Сопротивление проводников
- •9. Закон Джоуля - Ленца. Закон Ома для неоднородного участка цепи. Разветвленные цепи. Правила Кирхгофа
- •10. Взаимодействие токов. Магнитное поле. Магнитная индукция
- •11. Магнитное поле в веществе. Магнитные свойства вещества
- •Магнитные свойства вещества
- •Описание поля в магнетиках Для описания поля в магнетиках часто пользуются величиной
- •Диамагнетики
- •Парамагнетики
- •12. Закон Ампера. Сила Лоренца
- •13. Ферромагнетики. Магнитный гистерезис. Применения ферромагнетизма. Природа ферромагнетизма
- •Природа ферромагнетизма
- •14. Магнитный поток. Явление электромагнитной индукции. Закон электромагнитной индукции. Правило Ленца. Токи Фуко
- •15. Явление самоиндукции. Токи при замыкании и размыкании цепи. Энергия магнитного поля
- •16. Электрический ток в металлах. Элементарная классическая теория проводимости металлов
- •17. Основы квантовой теории металлов
- •18. Электрический ток в растворах и расплавах электролитов. Закон Фарадея для электролиза
- •19. Электрический ток в газах. Самостоятельный и несамостоятельный разряд
- •20. Электрический ток в вакууме. Термоэлектронная эмиссия Ламповый диод. Электронно-лучевая трубка
- •21-22. Собственная и примесная проводимость полупроводников
- •23. Свойства p-n- перехода. Полупроводниковые диоды. Транзисторы
- •24. Свободные электромагнитные колебания в контуре. Формула Томсона
- •25. Вынужденные электромагнитные колебания. Переменный ток
15. Явление самоиндукции. Токи при замыкании и размыкании цепи. Энергия магнитного поля
Электрический ток i, текущий в любом контуре, создает потокосцепление (полный магнитный поток) Ψ. При изменении i будет меняться Ψ, и, следовательно, в контуре будет индуцироваться э.д.с. Это явление называют самоиндукцией.
В соответствии с законом Био-Савара-Лапласа напряженность магнитного поля пропорциональна силе тока, вызвавшего поле. Отсюда следует, что ток в контуре i и создаваемый им полный магнитный поток Ψ пропорциональны друг другу:
Ψ = Li.
Коэффициент пропорциональности L между силой тока и полным магнитным потоком Ψ называют индуктивностью контура. Наблюдения и расчет показывают, что индуктивность контура зависит от его формы, размеров, числа витков и магнитной проницаемости сердечника (если он помещен в контур).
При изменении силы тока в контуре возникает э.д.с. самоиндукции. В случае, когда индуктивность контура неизменна, э.д.с. самоиндукции можно вычислить по формуле:
εs = - L di/dt = - L і′
Индуктивность проводника численно равна э.д.с. самоиндукции, возникающей в данном проводнике при изменении в нём тока на единицу тока за единицу времени. Единицу силы тока устанавливают из этой же формулы:
1В 1С = 1 Ом ·с = 1 Гн (генри)
1А
Явление возникновения э.д.с. индукции в одном из контуров при изменении силы тока в другом называют взаимной индукцией.
По правилу Ленца дополнительные токи, возникающие в проводнике вследствие самоиндукции, всегда направлены так, чтобы препятствовать изменениям тока, текущего в цепи. Это приводит к тому, что установление тока при замыкании цепи и убывание тока при размыкании цепи происходит не мгновенно, а постепенно.
Экстраток размыкания тем больше, чем большее число витков имеет контур. Поэтому в цепях тех электродвигателей и электрогенераторов, где после размыкания цепи остаются замкнутые контуры, вместо рубильников ставят рычажные реостаты, при пользовании которыми исключается возможность возникновения больших экстратоков.
Э.д.с самоиндукции противодействует увеличению электрического поля в цепи, возникающего при её замыкании, т.е. при подключении к ней источника тока. Поэтому для создания в проводнике с индуктивностью L тока должна быть совершена работа против сил вихревого электрического тока, появляющегося в проводнике с током при изменении его магнитного поля. Эта работа совершается за счет энергии источника тока, создающего ток в данном проводнике. Из закона сохранения энергии следует, что при этом энергия источника тока превращается в энергию магнитного поля тока. Энергию магнитного поля проводника с током определяют по формуле:
Wм = LI² /2
16. Электрический ток в металлах. Элементарная классическая теория проводимости металлов
Для выяснения природы носителей тока в металлах был поставлен ряд опытов.
Опыт Рикке (1901 г.)
Cu |
Al |
Cu |
Три цилиндра с тщательно отполированными торцами складывались в один составной проводник, по которому в течение года в одном направлении пропускался электрический ток. Вес цилиндров не изменился. Следовательно, перенос заряда в металлах осуществлялся не атомами, а другими частицами, входящими в состав металлов. Такими частицами могли быть открытые Томсоном электроны.
Опыты Мандельштама и Папалекси (1913 г.), Стюарта и Толмена (1916 г.)
На катушку намотана проволока, присоединенная к чувствительному гальванометру. Катушку приводили во вращение, а затем резко тормозили. В момент торможения гальванометр показывал кратковременный ток, направление которого свидетельствовало о том, что он создается движением отрицательно заряженных частиц. Стюарт и Толмен определили удельный заряд q/m частиц. Он практически совпал с удельным зарядом электрона. Тем самым было доказано, что электрический ток в металлах представляет собой упорядоченное движение электронов.
В начале ХХ века Друде и Лоренцем была создана классическая электронная теория проводимости металлов. Её основные положения заключаются в следующем.
Металлы имеют кристаллическую решетку, в узлах которой находятся положительные ионы, а между ними движутся свободные электроны (электроны проводимости). Электроны проводимости ведут себя подобно одноатомному идеальному газу. В промежутках между соударениями они движутся совершенно свободно, пробегая в среднем некоторый путь λ. Однако, в отличие от атомов газа, пробег которых определяется соударением атомов друг с другом, электроны сталкиваются преимущественно не между собой, а с ионами кристаллической решетки. Эти столкновения приводят к установлению теплового равновесия между электронным газом и кристаллической решеткой.
В отсутствии внешнего электрического поля электроны проводимости совершают хаотическое тепловое движение со средней квадратичной скоростью vкв., зависящей от температуры металла (vкв ~ √Т). Когда к металлу приложено внешнее электрическое поле, электроны проводимости начинают двигаться со средней скоростью vср., пропорциональной напряженности электрического поля Е, образуя электрический ток. Эта скорость пренебрежимо мала по сравнению со средней квадратичной скоростью, поэтому во всех расчетах, связанных со столкновениями электронов проводимости с решеткой, скоростью движения электронов считают среднюю квадратичную скорость vкв.
С точки зрения электронной теории сопротивление металлов обусловлено соударениями электронов проводимости с ионами кристаллической решетки. С ростом температуры сопротивление металлических проводников увеличивается, так как, чем выше температура, тем интенсивнее колебания кристаллической решетки и тем чаще электроны сталкиваются с ними. Экспериментально установлено, что зависимость сопротивления чистых металлов от температуры выражается формулой R = Ro (1 + αt). Коэффициент пропорциональности α называют температурным коэффициентом сопротивления (α > 0).
В 1911 г. голландский физик Камерлинг-Оннес обнаружил, что при температурах, близких к абсолютному нулю, сопротивление некоторых химически чистых металлов (например, цинка, алюминия, олова, ртути, свинца), а также ряда сплавов скачком падает до нуля. Это явление получило название сверхпроводимости. Это явление не может быть объяснено на основе классической электронной теории проводимости. Объяснение этому явлению дает только квантовая механика. Классическая электронная теория проводимости оказалась не в состоянии объяснить зависимость сопротивления металлов от температуры (т.к. согласно этой теории R~√Т, на практике R~Т.