
- •Основные понятия информатики
- •1.1. Информатика как наука и учебная дисциплина
- •1.2. Понятие информации
- •1.3. Сигналы и данные
- •1.4. Информатизация общества
- •1.5. Контрольные вопросы и задания
- •2. Меры и единицы измерения информации
- •2.1. Формулы Хартли и Шеннона
- •2.2. Меры информации
- •2.2.1. Синтаксическая мера информации
- •2.2.2. Семантическая мера информации
- •2.2.3. Прагматическая мера информации
- •2.3. Бит, байт и производные от них единицы
- •2.4. Контрольные вопросы и задания
- •3. Системы счисления
- •3.1. Позиционные системы счисления
- •3.2. Двоичная, восьмеричная и шестнадцатеричная системы счисления
- •3.3. Перевод чисел из десятичной системы в другую позиционную систему счисления и обратно
- •3.3.1. Перевод целого десятичного числа в другую позиционную систему счисления
- •3.3.2. Перевод правильной десятичной дроби в другую позиционную систему счисления
- •3.3.3. Перевод числа в десятичную систему счисления
- •3.4. Арифметические операции в позиционных системах счисления
- •3.4.1. Сложение
- •3.4.2. Вычитание
- •3.5. Контрольные вопросы и задания
- •4. Кодирование (представление) данных в эвм
- •4.Введение
- •4.1. Представление целых чисел в компьютере
- •4.1.1. Форматы хранения целых чисел без знака
- •4.1.2. Форматы хранения целых чисел со знаком
- •4.2. Представление в компьютере вещественных чисел Форматы хранения вещественных чисел
- •4.3. Представление в компьютере текстовой информации
- •4.4. Кодирование графической информации
- •0×00Bbggrr
- •4.5. Контрольные вопросы и задания
- •5. Основные понятия алгебры логики
- •5.1. Логические величины: истина (логическая единица) и ложь (логический ноль)
- •5.2. Логические операции: инверсия, дизъюнкция и конъюнкция
- •5.3. Основные законы булевой алгебры
- •5.4. Контрольные вопросы и задания
- •6. Логические основы эвм
- •6.Введение
- •6.1. Бистабильная ячейка – триггер
- •6.2. Регистры
- •6.3. Сумматор
- •6.4. Выполнение операций сложения, вычитания и умножения целых чисел
- •6.4.1. Сложение и вычитание
- •6.4.2. Умножение и деление
- •6.5. Контрольные вопросы и задания
- •7. Основные этапы развития вычислительной техники. Архитектура эвм. Принципы работы вычислительной системы
- •7.1. Основные этапы развития вычислительной техники
- •7.2. Архитектура эвм
- •7.3. Принцип работы вычислительной системы
- •7.4. Контрольные вопросы и задания
- •7.4. Контрольные вопросы и задания
- •8. Состав и назначение основных элементов персонального компьютера. Центральный процессор. Системные шины и слоты расширения
- •8.1. Классификация эвм. Основные элементы пк и их назначение
- •8.2. Центральный процессор
- •8.2.1. История развития процессоров
- •8.2.2. Назначение и структура простейшего процессора
- •8.2.3. Принцип действия процессора
- •8.2.4. Арифметико-логическое устройство
- •8.3. Системные шины и слоты расширения
- •8.3.1. Шина расширения isa
- •8.3.2. Шина расширения pci
- •8.3.3. Шина расширения agp
- •8.3.4. Шина расширения pci Express
- •Описание протокола
- •Пропускная способность шины pci Express
- •8.4. Контрольные вопросы и задания
- •9. Запоминающие устройства: классификация, принцип работы, основные характеристики
- •9.1. Классификация и основные параметры зу. Память
- •9.2. Оперативная память
- •9.3. Внешнее запоминающее устройство
- •9.4. Контрольные вопросы и задания
- •10. Устройства ввода/вывода данных, их разновидности и основные характеристики
- •10.1. Устройства ввода информации
- •10.2. Устройства вывода информации
- •10.3. Контрольные вопросы и задания
2.3. Бит, байт и производные от них единицы
Для измерения количества информации нужна единица измерения.
В качестве единицы информации К. Шеннон предложил принять такое количество информации, при котором неопределенность уменьшается в 2 раза. Такая единица названа бит (англ. bit — binary digit — двоичная цифра).
Бит в теории информации — количество информации, необходимое для различения двух равновероятных сообщений (типа «орел – решка», «чет – нечет» и т.п.).
В вычислительной технике битом называют наименьшую «порцию» памяти компьютера, необходимую для хранения одного из двух знаков «0» и «1», используемых для внутримашинного представления данных и команд.
Информационный объем сообщения — количество двоичных символов, используемое для кодирования этого сообщения.
Бит — слишком мелкая единица измерения. На практике чаще применяется более крупная единица — байт, равная 8 бит. Именно 8 бит требуется для того, чтобы закодировать любой из 256 символов алфавита клавиатуры компьютера (256 = 28).
1 байт = 8 бит
Широко используются также еще более крупные производные единицы информации:
1 килобайт (Кбайт) = 1024 байт = 210 байт;
1 мегабайт (Мбайт) = 1024 Кбайт = 220 байт;
1 гигабайт (Гбайт) = 1024 Мбайт = 230 байт.
В последнее время в связи с увеличением объёмов обрабатываемой информации входят в употребление такие производные единицы, как:
1 терабайт (Тбайт) = 1024 Гбайт = 240 байт;
1 петабайт (Пбайт) = 1024 Тбайт = 250 байт.
2.4. Контрольные вопросы и задания
Как измеряется семантическая мера?
В чем суть прагматической меры информации?
Как измеряется объем данных?
Что такое энтропия?
Как оценить информацию с помощью формулы Хартли?
Как оценить информацию с помощью формулы Шеннона?
Назовите основные формы адекватности информации.
Что такое бит?
Чему равен 1 байт?
Назовите основные единицы измерения информации.
3. Системы счисления
3.1. Позиционные системы счисления
Система счисления — это совокупность правил и приемов наименования и записи чисел, а также получения значения чисел из изображающих их символов [1].
Существуют позиционные и непозиционные системы счисления.
В непозиционных системах счисления вес цифры (т. е. тот вклад, который она вносит в значение числа) не зависит от ее позиции в записи числа. Пример — римская система счисления: в числе ХХIII (двадцать три) вес цифры Х в любой позиции равен просто десяти, а цифры I — единице.
В позиционных системах счисления вес каждой цифры изменяется в зависимости от ее позиции в последовательности цифр, изображающих число. Например, в числе 343,73 первая тройка означает три сотни, вторая – три единицы, а третья – три сотых доли единицы.
Основание позиционной системы счисления — количество различных цифр, используемых для изображения чисел в данной системе счисления [2].
Основанием системы счисления может быть любое натуральное число. Следовательно, возможно бесчисленное множество позиционных систем: двоичная, троичная, четверичная и т.д. В настоящее время общепринятой является арабская десятичная система счисления, состоящая из десяти цифр {0,1,2,3,4,5,6,7,8,9}.
Пример. Приведем первые 10 чисел в пятеричной системе счисления (используются первые пять цифр от 0 до 4): 0, 1, 2, 3, 4, 10, 11, 12, 13, 14.
Основание системы счисления принято указывать в нижнем регистре справа от числа.
Например: 1001,012 – число в двоичной системе счисления; 206,78 – число в восьмеричной системе счисления.