
- •Оглавление.
- •Пример 1
- •Пример 2
- •Пример 3
- •Вопрос.
- •Глава I Математический формализм
- •О понятии действительных чисел
- •Формализм натуральных чисел.
- •Операции, определяющие формирование множества рациональных чисел.
- •Вывод 1.
- •Вывод 2.
- •Аксиома связи сложения и умножения.
- •Задача 2.
- •Вывод 3.
- •Аксиоматизация множества действительных чисел.
- •Аксиома непрерывности Кантора.
- •Аксиоматическое обоснование евклидовой геометрии.
- •О“Началах” Евклида.
- •Аксиоматика д. Гильберта(1862-1943)
- •Группа 1. Аксиомы соединения.
- •Теорема 1.
- •Теорема 2.
- •Теорема 3.
- •Группа 2. Аксиомы порядка.
- •Определение.
- •Группа 3. Аксиомы конгруэнтности.
- •Теорема (о внешнем угле треугольника).
- •Определение движения.
- •Замечание 1.
- •Вывод 1.
- •Вывод 2.
- •Группа 4. Аксиомы непрерывности.
- •Замечание 2.
- •Замечание 3.
- •Вывод 3.
- •Группа 5. Аксиома параллельности.
- •Замечание 4.
- •Два недостатка аксиоматики д. Гильберта.
- •Структура векторного пространства.
- •Модель направленных отрезков.
- •Сложение обладает свойствами:
- •Свойства операции умножения:
- •Определение.
- •Арифметическая модель векторного пространства.
- •Теорема размерности.
- •Вывод 1.
- •Вывод 2.
- •Вывод 3.
- •Аксиомы скалярного произведения векторов.
- •Следствие.
- •Следствие.
- •Вывод 4.
- •Определение.
- •Модель Вейля евклидовой геометрии.
- •Арифметизация трехмерного евклидова пространства.
- •Свойства операции откладывания вектора.
- •Определение.
- •Вывод 1.
- •Вывод 2.
- •Многомерное арифметическое евклидово пространство.
- •Вывод 3.
- •Замечание.
- •Следствие 1.
- •Основные факты в планиметрии Лобачевского.
- •1. Сумма углов многоугольника в плоскости l2.
- •Следствие 2.
- •Вывод 3.
- •Главаii Свойства аксиоматических систем.
- •Математические структуры и аксиоматические теории.
- •Понятие отношений между объектами.
- •Следствие 1.
- •Пример 1.
- •Определение.
- •Следствие 2.
- •Понятие математической структуры.
- •Определение.
- •Замечание 1.
- •Формальная и содержательная аксиоматики. Теории и структуры.
- •Рассмотрим пример.
- •Вывод 1.
- •Вывод 2.
- •Определение.
- •Изоморфизм.
- •Пример 1.
- •Пример 2.
- •Определение изоморфизма.
- •Вывод 3.
- •Вывод 1.
- •Независимость аксиоматической системы.
- •Независимость аксиомы параллельности.
- •Замечание 1.
- •Дедуктивная полнота и категоричность системы аксиом.
- •Определение (дедуктивной полноты).
- •Определение (категоричности).
- •Историческая роль V постулата Евклида в развитии оснований математики.
- •Анализ текстовых парадоксов.
- •Языковые свойства имен объектов.
- •Пример 1.
- •Пример 2.
- •Пример 3.
- •Проблема выразимости.
- •Понятие искусственного языка.
- •Понятие парадокса.
- •“Ахиллес и черепаха”.
- •Парадокс пустого множества.
- •Парадокс достижимости в натуральном ряде.
- •“Одно и то же, но по-разному”
- •Пример 1.
- •Пример 2.
- •Заключение.
- •Обозначения.
- •Литература
Понятие искусственного языка.
Всякий предметный или искусственный язык состоит из следующих компонентов:
1. Алфавит (конечный список исходных символов).
2. Правила построения термов (имен и именных форм).
3. Правила построения формул (высказываний и высказывательных форм).
4. Интерпретации языка.
Пункты 1-3 представляют синтаксис языка; пункт 4 представляет семантику языка.
Искусственный язык является математическим языком и носит исключительно информативный характер. В этих языках используются только повествовательные предложения (высказывания). Формы мышления не представляющиеся повествовательными предложениями в этих языках невыразимы.
Самым простым искусственным языком является язык математической логики первого порядка, [11].
Предметные языки – геометрический и теории множеств считаются более сложными, так как содержат отношения включения и другие, не заданные в языке логики первого порядка.
Искусственные языки делятся по уровням сложности в зависимости от типов отношений, которые они описывают.
Описание свойств моделей в зависимости от уровня языка требует специальных сведений по математической логике [11], которые не входят в круг рассматриваемых нами вопросов.
Мы ограничимся нестрогим анализом текстов некоторых парадоксов, используя лишь понятие модели, совместимости, независимости и категоричности систем аксиом.
Понятие парадокса.
Проблема выразимости отражает несоответствие естественного и искусственного языков, а также несоответствие между самими искусственными языками, относящимися к моделям разного уровня сложности. Эти несоответствия мы обнаруживаем в виде различных парадоксов.
Парадоксами будем называть текстовое утверждение, логическое следствие которого приводит к противоречиям.
Мы выделим два типа соответствия между языками моделей.
Первый тип. Согласно выводу 3, § 6, изоморфизм мыслимой модели на некоторою внешнюю модель дает возможность “воспринимать объект” или наоборот, “выражать мысль в виде каких-то внешних отношений”. При этом внешние отношения фиксируются в виде некоторого текста.
Второй тип. Соответствие между языками моделей представляется структурными изоморфизмами.
Рассмотрим текстовые противоречия с точки зрения нарушения одного из двух указанных типов соответствия между языками моделей на примерах известных парадоксов.
“Ахиллес и черепаха”.
Понятийный аппарат человеческого разума способен создавать автономные модели. Эти мыслимые модели могут не иметь образов в реальном мире. Противоречие в таком случае снимается исследованием изоморфизма между мыслимой моделью и моделью определенного объекта. Рассмотрим пример.
Апория “Ахиллес и черепаха” принадлежит Зенону из Элен (483-375 гг. до н.э.) и состоит в следующем.
«Легендарный бегун Ахиллес движется в два раза быстрее черепахи. В момент старта черепаха находилась на расстоянии “а” от Ахиллеса. Когда Ахиллес пробежит этот отрезок “а”, то черепаха уползет вперед на расстояние “а”/2. Когда Ахиллес пробежит отрезок “а”/2, то черепаха уползет вперед на “а”/4. Когда Ахиллес пробежит “а”/4, то черепаха продвинется вперед еще на “а”/8 и т.д. Этот процесс бесконечен, и Ахиллес никогда не догонит черепаху».
Апория построена на интуитивном убеждении, что никакие бесконечные процессы завершиться не могут. Именно это и приводит к противоречию. Надо объяснить каким образом рассматриваемый “мысленно” бесконечный процесс все же закончится.
Герман
Вейль в началеXX
века дал следующее объяснение этой
апории. В мыслимой модели существует
бесконечная последовательность
1,2,3,...,n,...
временных событий (Ахиллес проходит
расстояние “а”/2n)
с неограниченно убывающим временным
интервалом tn
=1/2n.
Сумма таких интервалов существует и
равна 2 ед. времени.
В реальном мире каждая физическая операция требует некоторого времени, которое больше некоторого фиксированного временного интервала. Поэтому всякая бесконечная последовательность физических операций “выполнима” лишь за бесконечный промежуток времени.
Таким образом, в апории «Ахиллес и черепаха» нет изоморфизма между мыслимой и реальной моделями.