Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
лекции металловедение 1.doc
Скачиваний:
515
Добавлен:
26.03.2015
Размер:
17.03 Mб
Скачать

Микроструктура – внутреннее строение металлов и сплавов, изучаемое с помощью специальных приборов при большом увеличении изображения.

Для этих целей используют оптические и электронные микроскопы.

В оптическом микроскопе изображение формируется в отраженном свете при увеличении от 100 до 2500 раз. С помощью оптических микроскопов можно изучать элементы микроструктуры размером не менее 0,2 мкм.

Микроструктуру в оптическом микроскопе изучают на специальных образцах микрошлифах, которые предварительно вырезают из детали или заготовки, шлифуют, полируют и протравливают в химических реактивах с целью создания на поверхности рельефа для отражения и преломления лучей от различных участков микрошлифа.

В электронных микроскопах используются не оптические, а электронные лучи с очень малой длиной волны. Это позволяет изучать объекты до 0,2 – 0,5 нм. В настоящее время используются два типа электронных микроскопов: ПЭМ – просвечивающий электронный микроскоп и РЭМ – растровый электронный микроскоп. Наибольшее распространение нашли ПЭМ, которые позволяют получить увеличение 100 000 и более раз. Для работы на электронных микроскопах требуется приготовление специальных образцов по достаточно сложной технологии.

Исследование микроструктуры с помощью микроскопов называется микроанализом (металлографическим анализом) или металлографией.

В результате металлографического анализа можно определить:

  1. Величину зерна (рис.3.4 а и б);

а)

б)

Рис.3.4. Микроструктура сплава с крупным (а )

мелким (б) зерном.

  1. Наличие фаз, структурных составляющих, дисперсных частиц; их количество, величину, взаимное расположение, строение.

Фаза – обособленная часть структуры, отделенная от соседней границей раздела, при переходе через которую могут меняться состав, строение и свойства.

Структурная составляющая — более общее понятие, может включать в себя 2 и более фазы, также является обособленной частью структуры.

Дисперсные частицы – мельчайшие частицы, распределенные по структуре и представляющие химические соединения Ме с Ме, либо Ме с неметаллами (нитриды, оксиды, карбиды и т.п.). Формируются в структуре в процессе дополнительной обработки материалов с целью изменении свойств (рис.3.5).

Рис. 3.5. Наличие в микроструктуре дисперсных частиц.

  1. Способ изготовления детали (зернистое строение, рис.3.5, или

ориентированное, рис.3.6, а, б).

а)

б)

Рис.3.6. Микроструктура деформированного металла:

а) Текстура

б) Волокнистая структура

  1. Вид разрушения металла (рис.3.7).

а)

б)

Рис.3.7. Микроструктура (изображение в электронном микроскопе)

поверхности разрушения:

а) вязкое разрушение

б) хрупкое разрушение

  1. Краевые дислокации, вышедшие на поверхность металла (рис.3.8)

а)

б)

Рис.3.8. Микроструктура металла (изображение

в электронном микроскопе) с краевыми дислокациями.

  1. Наличие и вид трещины после разрушения материала под воздействием различных внешних факторов (рис.3.9.)

Рис.3.9. Микроструктура материала после

разрушения под воздействием внешней нагрузки

и агрессивной среды (с наличием трещины).

Изображение в оптическом микроскопе.

  1. Превращения, происходящие в металлах в процессе различных обработок, в том числе термической обработки.

  2. Определить движение, размножение и плотность дислокаций (с использованием электронных микроскопов).

Для изучения кристаллической структуры металлических материа-

лов используется рентгеноструктурный анализ (РСА).

В основе этого метода лежит взаимодействие рентгеновского излучения с электронами металла, в результате которого возникает дифракция рентгеновских лучей (длина волны 0,02 – 0,2 нм).

Кроме того метод РСА применяется для распознавания фаз и частиц по их кристаллоструктурным параметрам. Для проведения рентгеноструктурного анализа используются рентгеновские камеры и дифрактометры.

Исследование структуры металлических материалов различными методами позволяет изучить внутреннее строение материалов, процессы превращения, происходящие в структуре во время внешних обработок. Такие исследования являются наиважнейшими при выборе материалов, так как именно структура металлов и сплавов определяет и обуславливает свойства материалов.

Итак: свойства материалов зависят от структуры. Нельзя изменить свойства, не изменяя структуру.

Изменяя состав сплава, изменяется его структура, а значит и свойства.

Поэтому осуществляя правильный выбор материалов для работы в тех или иных условиях, необходимо изучать взаимосвязь между составом, структурой и свойствами материала.

ЛЕКЦИЯ 4

СВОЙСТВА МЕТАЛЛОВ И СПЛАВОВ.

Все свойства металлов и сплавов принято подразделять на группы: физические, химические, технологические, механические и эксплуатационные.

Физические свойства определяют поведение металлических материалов в тепловых, электромагнитных, радиационных полях. К физическим свойствам относятся плотность, температура плавления, теплоемкость, теплопроводность, электропроводность, магнитные характеристики, термическое расширение.

Химические свойства характеризуют способность материалов вступать в химическое взаимодействие с другими веществами и химическими элементами, а также способность металлов и сплавов сопротивляться воздействию агрессивных сред, в том числе окислению.

Технологические свойства характеризуют способность материалов подвергаться холодной и горячей обработке, в том числе при обработке резанием, ковке, сварке, литье. К технологическим свойствам относятся обрабатываемость резанием, свариваемость, ковкость, литейные свойства (жидкотекучесть – способность жидкого металла заполнять литейную форму; усадка – уменьшение объема металла при переходе из жидкого состояния в твердое; ликвация – химическая неоднородность в отливках; склонность к образованию трещин – вероятность образования литейных трещин и пор в процессе затвердевания в литейной форме).

К механическим свойствам относятся твердость, прочность, пластичность, упругость, вязкость.

Эксплуатационные свойства характеризуют поведение материала в заданных рабочих условиях. К эксплуатационным свойствам относятся жаропрочность, жаростойкость, хладноломкость, усталость, износостойкость.

Для выбора материала и оценки его длительной работоспособности и на-

дежности наиболее важными являются механические и эксплуатационные свойства. Поэтому именно эти группы свойств и методы их определения будут рассмотрены подробно.

МЕХАНИЧЕСКИЕ СВОЙСТВА МЕТАЛЛОВ И СПЛАВОВ

Многообразие условий службы и обработки материалов определяет необходимость проведения большого числа механических испытаний с целью получения целого комплекса значений механических свойств.

В зависимости от способа нагружения образца различают статические, динамические и циклические испытания.

Рассмотрим основные механические свойства и их количественные характеристики.

ТВЕРДОСТЬ

Твердость - свойство материала сопротивляться воздействию внешних нагрузок при непосредственном соприкосновении.

Все методы измерения твердости имеют одинаковый принцип:

вдавливание в поверхность образца инородного тела (индентора) различной формы, размера с различной нагрузкой.

Различают следующие методы определения твердости:

  1. Метод Бринелля (индентор – стальной шарик);

  2. Метод Роквелла (индентор - алмазный конус или стальной шарик);

  3. Метод Виккерса (индентор - алмазная пирамидка).

Схемы этих методов приведены на рис. 4.1.

Рис. 4.1. Схема определения твердости:

а) - по Бринеллю; 6) - по Роквеллу; в) - по Виккерсу

Метод Бринелля

Испытание по методу Бринелля (рис. 4.1, а) состоит из вдавливания в

испытуемое тело стального шарика диаметром D под действием постоянной нагрузки Р ( Р=1000 кг — для цветных металлов; Р—3000 кг — для черных металлов) и измерении диаметра отпечатка d на поверхности образца. Число твердости по Бринеллю НВ определяется величиной нагрузки Р, деленной на сферическую поверхность отпечатка. Чем меньше диаметр отпечатка, тем выше твердость металла. На практике твердость определяют не по формулам, а по специальным таблицам, исходя из диаметра отпечатка d.

Твердость по Бринеллю обозначается НВ, где Н – твердость, В – метод Бринелля. Твердость по Бринеллю измеряется в МПа.