
Белоногов. Задачник по теории групп
.pdf# A GL(2, Q) # G : a !
( G E 4 :
!
. a G!
0 a Z(G) ! a Y* G a−1
> ! & %& C # p = ∞C
!$ A E G = D(A) E 4 :
> G " A1 . "!
( A1 AD
. G \ A1 # A1 "$#D 0 G = A1λ t , t E " # : G \ A1 ;
% H ≤ D(A),
H ≤ A1 H G!
|H : H ∩ A1| = 2 H D(H ∩ A1).
2 # Z(G) CG(t) t G \ A1
! G = D2n E : 2n, G = a b ,
o(a) = n, o(b) = 2, b−1ab = a−1. )
CG(a)! CG(b) Z(G)!
4 : G!
4 G
! r E 4 : D2n >
r = |
1 |
|
|
21 (n + 3), |
n 4 ! |
2 n + 3, |
n 4 |
|
|
|
|
! ( < " n ≥ 3
! n 4 :
. < " n N !
n 4
! n
D2n
!
D2n "$ #!
Z(D2n) = 1 ?
! A D∞ # 4 :
! 3 " |
G H |
|
( G |
|
4 "$ ! |
. G D2n 4 n |
||
!! 3 " |
G H |
|
( G |
|
4 "$ D |
. G D2n 4 n! G D∞.
|
A ≤ G ; |
|
|
|
|
|
|
!" |
|
H |
|
a |
|
AD |
|
( G = Aλ b ! o(b) = 2 ab = a−1 |
|
|
|
||||
|
|
|
|
|
|
. A G D(A)
!# G E ! " A "!
: G \ A E "$ > G E !
: # E "$! A
G D(A).
' ( #) * )
"
! ! $ * E : # K = (M, +, ·)!
(M, +) E ! · E $ $ M (+, ·)
! a(b + c) = ab + ac (b + c)a = ba + ca "
: a, b, c M $ |
|
! |
||
E ! + · |
" |
|
||
|
|
|
||
: (M, +) K+ |
|
|
K I $ K : (
#! 1·x = x·1 = x x M! &
M : a |
|
xa = ax = 1 |
M $# |
! |
|
K |
K· |
5 ( A ! # # : a K
# : ! # a−1. I a, b K \ {0}ab = 0! # : a b
K
$ K = (M, +, ·) ! (M \ {0}, ·) E
+ K char(K), "!
n 1 = 0 n N ( E $ !
n N n 1 = 0
, $ R $ K |
f : |
R → K ! |
|
f (x + y) = f (x) + f (y) f (xy) = f (x)f (y) |
x, y R. |
J Ker (f ) = {r R | f (r) = 0}
f $ R $ I !
r I I r I r R " ,
R/I $ R I 5 &&
) "
$!
: , H
C E !
R E !
Q E $ !
Z E $ $ !
Zn E $ " n (n N)!
H E $ !
Mn(K) E $ (n × n) $ $ K!
GLn(K) := Mn(K)· E ! n K! SLn(K) E n KD
Diagn(K)! Tn(K)! U Tn(K)! On(K) E ! !
! GLn(K)
# " ! K E $ $#n N 5 .(! 5 0( + " : H
GL(n, K)! SL(n, K)
J$ x Mn(K) ! x = ke! k K e E $ A : GLn(K) "
$
tij (α) 5 %- < " # $ x
H
xij E : ! # i# j $ x! x E $! x
J ! # #
2 -
F E : V $ (u + v V u, v V )
(f v V f F v V ) ! ( V E
"D . f (u+v) = f u+f v, (f1 +f2)v = f1v +f2v;
0 (f1f2)v = f1(f2v), 1v = v " u, v V ; f, f1, f2 F ; ( E
$ F ; V
dim(V )! α : |
V → V |
V |
V ! |
(u + v)α = uα + vα (f v)α = f vα u, v V f F. J
# V $#
vα+β = vα + vβ vαβ = (vα)β $!
End (V ) GL(V ) := End (V )· H Aut(V )
B = (v1, . . . , vn) E V ( α
B $ αB ! :,,$
|
v1α, . . . , vnα B! ! |
|||||
viα = fi1v1 + . . . + finvn, |
|
fij F, (i = 1, . . . , n), |
||||
|
|
f11 . . . f1n |
|
|||
|
aB = |
|
|
|
|
. |
|
|
f |
n1 |
. . . f |
nn |
|
|
|
|
|
|
||
|
|
|
|
|
|
|
n F !
! , V (n, F )!
# n : F ! $ !
. F M
$ $# :F ! $# $!
E ! 4
f (ab) = (f a)b = a(f b) f F a, b M
A : , $ 5-/ !
# 5-( # $ 5 5%
N K E $ $# ( K $
. J : $ K
$ K·
0 I a, x, y E : K ! xa = 1 = ay, : a
x = y = a−1.
M E !
$ > M $
C! R Q
( J $ $
$ $ Z
. L $ Z G ! " $
$
0 2 # Z! $
"
L $ K $ K
! (L, +) ≤ K+ L $
p E M = {ab |
| a, b Z p b} |
|||||||||||||
> M $ Q p& & |
||||||||||||||
{a1, . . . , an} E n > 1 |
||||||||||||||
# > a1 + . . . + an = 0. |
|
|||||||||||||
! |
m, n |
N, |
E # n ( |
|||||||||||
$ |
C |
|
2πi |
|
2π |
i |
|
2π |
m |
| |
n m < n > |
|||
! |
= |
e n |
= cos |
n + |
sin |
n ! |
||||||||
|
|
|
n |
|
|
|
|
|||||||
1 + m + 2m + . . . + ( |
|
−1)m = 0. |
|
|
|
|
|
|
|
|||||
m |
|
|
|
|
|
|
|
" " $ K K[x] f (x)
K :,,$ K $
$
# J xn − 1 xm − 1 $ K[x]
! m | n
$ I F E ! " # n (n N) F
F n #
n E
( J " n $
$ " n
[0], [1], . . . , [n −1]! [i] E $
! " n iD [i] + [j] = [k]! k E
n i + j, [i][j] = [s]! s E
n ij
$ Zn
n
. Z+n Zn
( G $ :
$ Zn n ≤ 8 A
: ! Z·8 Z2 × Z2
. Z·16 Z4 × Z2.
n N # f (x) . Zn
#!
( f (x) # Zn!
. f (x) = (x − a)(x − b) = (x − c)(x − d) = (x − a)(x − c), {a, b} ∩ {c, d} = (a, b, c, d Zn)
) # : $ 4
A $ $# # # :
!
[a] Zn (a Z).
( [a] Z·n (a, n) = 1.
. Z·n ϕ(n), ϕ E ,$ #
! k, m, n N a Z. ; "
Z·n $ Zn! " |
||||||||||||||
( I ak ≡ 1(mod n) am ≡ 1(mod n), a(k,m) ≡ 1(mod n). |
||||||||||||||
. > # I (a, n) = 1, aϕ(n) ≡ 1(mod n). |
||||||||||||||
" $ Zn |
|
! n E |
||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
||
# Z F4 # (M, +, ·)! M = {0, 1, x, y}! + |
||||||||||||||
· E $ M! " $H |
|
|
|
|||||||||||
|
[ |
|
( |
x |
y |
|
|
· |
|
/ |
( |
x |
y |
|
/ |
|
|
|
|||||||||||
/ |
/ |
( |
x |
y |
|
/ |
|
/ |
/ |
0 |
0 |
|
||
( |
( |
/ |
y |
x |
|
( |
|
/ |
( |
x |
y |
|
||
|
x |
x |
y |
/ |
( |
|
|
x |
|
0 |
x |
y |
( |
|
|
y |
y |
x |
( |
/ |
|
|
y |
|
0 |
y |
( |
x |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
( F4 E
. =" 4 : , " F4
$ # E $
A ! E $
> n N K E $
( J (n × n) $ K $
$ $ $ Mn(K)
. K $ >
GLn(K) := Mn(K)· = {x Mn(K) | det(x) K·}!
{x Mn(K) | det(x) = 1} GLn(K)
SLn(K)D
|
" n ≥ 2 GLn(K) SLn(K) |
||
|
K E $ $# G E |
||
|
a |
b K a2 |
= b2. F G # |
|
b |
a |
|
GL2(K)?
K E $ $# a K. >
Ga
$ |
|
x |
y |
, |
x, y K, |
ay |
x |
|
|
# $ |
||||
$ |
|
|
|
|
g E |
$ GL2(K), K E |
|||
$ $# x M2(K). ; H |
||||
( xg = gx, |
|
|
|
|
. x = k1g + k2e, k1, k2 K |
|
e E $ |
( A M : $ M2(Z2)
. A $ M2(Z2) # $ : ! "
0 GL2(Z2) = SL2(Z2) S3
( ) GL2(Z3) SL2(Z3)
. A G = SL2(Z3) # Q! , " Q8 . .8 G = Q A! A Z3
! GL2(C)! 4 $
0 |
1 |
0 |
i |
, |
−1 |
0 |
i |
0 |
|
i2 = −1! , Q8
" ( n E ! n ≥ 2 >
GL2(C)! 4 $
0 |
1 |
α |
0 |
1 |
|
, |
1 |
0 |
0 |
α− |
|
|
|
α E # n $! ,
D2n
. A GL2(C) # ! , " D∞
# A GLn(K) n > 1 # # n
! , GLn−1(K)
SLn(K)
$ A GLn(K) " # (s, t)
! s+t ≤ n! ! , GLs(K)×GLt(K)
K E $ $# (
GLn(K) " " 4 H
$ Diagn(K))D
$ # "
Tn(K))D
$ Tn(K) $ #
U Tn(K))D
$! $ a !
aa = e! a E $! a! e E
$ On(K))D
$! #
$ $! E !
, # Sn
GLn(K) = SLn(K) A! A K·
Tn(K) = U Tn(K) Diagn(K)
I A E GLn(K)! $!
$ A! " GLn(K)!
, " A
M E $ |
a |
0 |
, a, b |
|
|
b |
1 |
|
Zn, n > 2, a {1, −1} > M # GL2(Zn)!
, # D2n
|
T E # |
( ) |
x1 + x2i + x3j + x4k, |
{x1, x2, x3, x4} R, i, j, k E : !
R A 4 T $ + · " H
(x1 + x2i + x3j + x4k) + (y1 + y2i + y3j + y4k) =
=(x1 + y1) + (x2 + y2)i + (x3 + y3)j + (x4 + y4)k,
T
" #H
1x = x1 = x x T, i2 = j |
2 = k2 = −1, |
ij = −ji = k, jk = −kj = i, ki = |
−ik = j. |
|
< : x ( ) 4 # : |
||||||||||||||||||
|
= x1 − ix2 − jx3 − kx4 |x| = |
√ |
|
|
= |
x12 + x22 + x32 + x42 |
|
||||||||||||
|
|
|
|||||||||||||||||
x |
xx |
||||||||||||||||||
|
( H := (T, +, ·) E $ |
||||||||||||||||||
|
. # # : T |
|
|
||||||||||||||||
|
0 |
|
= |
|
|
|
x, y T |
|
|
|
|
|
|
|
|
|
|||
|
xy |
y |
x |
x |
|
= 1 H· |
|
||||||||||||
|
% J x |
|
T |
| |
|
|
|||||||||||||
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
|
|
|
|
) 4 :
4