
Белоногов. Задачник по теории групп
.pdf
! |A| |B|! |B| = |A||C|
C
< " A B G "
AB := {ab | a A, b B} E A B,
A−1 := {a−1 | a A}, An := A · · · A n N.
n
"
A : , H Q8 . .8
Zp∞ . &5
I H ≤ G!
( $ H $# GD
. : ! # : h H H! h
G
X E G ; H
( X ≤ G!
. XX X−1 X xy X " x, y X x−1 X
x X 0 XX−1 X! % X−1X X!
& Xx = X " x X! 5 xX = X " x X
X E G ! XX X X E G
( I X : ! X ≤
G
. A X # G
" G
# G

g E : G g := {gm | m Z}. ( g E $ G.
. I H ≤ g m E !
gm H! H = gm .
0 I o(g) = n N, g = {1, g, . . . , gn−1}.
J
O
! G E ! g G o(g) = n = ∞. ( I gm = 1! m | n.
. I k E $ ! o(gk) = ( n ) .
n,k
" G = a E $ n
k, m Z
( am = a(m,n) .
. ak am (m, n) | k.
0 ) G G !
" m n G
mD
G #
n.
% L G
# > = H ≤ G ·{Hgi | i J} E
. G H Hgi = Hgi i = j >
( G = Hgi
i J
. |G| = |H| |G : H|. A ! G E ! |H|
|G|.
$ . 8!
: # : #
7 $#
) # H Z4! Z2 × Z2! Z6!
S3
) ( . 0
# G! XX X C
" # & : X X CO
) Z+ L 4
G ! " k N Z+
k.
7 Z+ , #
+ " : # O
! ( A $#
. L g gm m Z
" ( I H ≤ G g G, g−1Hg := {g−1hg | h H} ≤ G.
g−1Hg " H G
. 3 4 , "
G
0 G 4 H !
H " # 4 !
H " # 4
# A B E G ; H ( AB BA!
. AB = BA!
0 AB ≤ G
$ G < A, B, H E G !
G = AB A ≤ H ≤ G. > H = A(B ∩ H).
A B E : GABA A > AB BA E G ! A # #
BA # # AB.
A B E G ;
H
( ABA A!
. A ≤ G B A
J
B O
A, B, C, D E G !
A B = C D.
>
{A, B} = {C, D}!
E G
A B! E C D
G A B !
G \ A B k : ( 7 G
. |A ∩ B| k k ≥ |(A \ A ∩ B)(B \ A ∩ B)|
0 G k {1, 2}O
) !
" !
" " !
" !
"
! ) ! "
" !
" n E M E n × n
$ / (! " # " $
$ > M E GLn(C)!
, # Sn
# A $
|
1 |
0 |
, |
i 0 |
, |
|
0 |
1 |
, |
|
0 i |
, |
± |
0 |
1 |
|
± 0 −i |
|
± |
−1 |
0 |
|
± |
i 0 |
|
i2 = −1! " GL2(C)
Q8! , #
$ M = {1, −1, i, j, k, −i, −j, −k} C−C
: · E
$ M! $#H
|
· |
1 −1 |
i |
j |
k −i −j −k |
||||
1 |
1 −1 |
i |
j |
k −i −j −k |
|||||
|
−1 |
−1 |
1 −i −j −k |
i |
j |
k |
|||
|
i |
i −i −1 |
k −j |
1 |
−k |
j |
|||
|
j |
j −j −k −1 |
i |
k |
1 −i |
||||
|
k |
k −k |
j −i −1 −j |
i |
1 |
||||
|
−i |
−i |
i |
1 −k |
j −1 |
k −j |
|||
|
−j |
−j |
j |
k |
1 |
−i −k −1 |
i |
||
|
−k |
−k |
k −j |
i |
1 |
j −i −1 |
|||
( (M, ·) E ! , |
Q8 |
|
|
|
|
. ) : : # 4
A B E G
( I Ag Bh g, h G! A ≤ B
. I A1 B1 E B
A B ! A1∩B1 B
A ∩ B.
M E G ; H
( " g G gM = M, gM ∩ M = , . MM−1M = M!
0 M # # G
I M : G !
Mn = M n ≥ 2! Mn−1 ≤ G M E #
Mn−1
M E G > H :=
{g G | Mg = M}! # G! 4 MH = M
|M| ! |H| |M|
I M G B
H1
B
H2! G B
H1, H2
< A B G
H
( |AB| = |A|D
. A B
BB−1
! I M E G!
m M Mm−1 |
|
m M m−1M E G. |
|
|
|
" H ≤ G g G ; H |
||
( gHg H! |
|
|
. H gH ≤ G. |
|
|
# I G |
B |
H1, . . . , Hn (n N)! # #
: Hi # G
$ A1 · · · An A1, . . . , An G
A1 ◦ · · · ◦ An!
# : x A1 · · · An "
x = a1 · · · an! ai Ai (1 ≤ i ≤ n)

( I A ≤ G! G = A ◦ S ! G = S ◦ A)
"! S
! G A
. A B
! A ∩ B = 1
0 A1, . . . , An G
! |A1 · · · An| = |A1| · · · |An|
% (A ◦ B) ◦ C = A ◦ (B ◦ C)! ABC = (A ◦ B) ◦ C! ABC = A ◦ (B ◦ C)! D : ABC = A ◦ B ◦ C
& I A = A1 ◦ · · · ◦ An! B = B1 ◦ · · · ◦ Bm AB = A ◦ B!
AB = A1 ◦ · · · ◦ An ◦ B1 ◦ · · · ◦ Bm
5 x(A ◦ B)y = (xA) ◦ (By) " x, y G.
ϕ E , G H A ≤ B ≤ G.
> Aϕ ≤ Bϕ ≤ H |Bϕ : Aϕ| = |B : A|.
Z+ × Z+ Z+.
A ≤ B ≤ G ! G = S1◦B B = S2◦A (S1 G, S2 G) G = (S1 ◦S2) ◦A A ! |G : A| = |G : B|·|B :
A|
A B E G
( I A = S ◦ (A ∩ B)! AB = S ◦ B
. I AB = S ◦ B S A! A = S ◦ (A ∩ B) 0 I A B !
|A| · |B| |AB| = |A ∩ B| .
I A B E G! A = (A ∩ B) ◦ S1
B = (A ∩ B) ◦ S2 ! AB = (A ∩ B) ◦ (S1 ◦ S2).
:
( H E n G >
" # A G |A : A ∩ H|
n : |A : A ∩ H| = n !
AH = G
. I A, B, C E G A ≤ B! |B ∩C : A∩C| ≤ |B : A|
! I A B " G!
A ∩ B # G! 4
|G : A ∩ B| ≤ |G : A| · |G : B|.
; ! G = AB
" I A1 ≤ A ≤ G B1 ≤ B ≤ G!
|A ∩ B : A1 ∩ B1| ≤ |A : A1||B : B1|.
# H E G G = H ◦ T ! T G I T T T ! T E G
$ G E T E # # G
# 4 # T
" : " : G \ T
G. 2 # G.
A B E G > #
AgB (g G) "
A1gB1 AhB, A1, B1, A, B E g, h E : G A ! A1 ≤ A B1 ≤ B O
A B E G g G
( AgB = A ◦ S! S G |S| = |B : B ∩ g−1Ag|.
. AgB = T ◦ B! T G |T | = |A : gBg−1 ∩ A|.
0 I Ag1B, . . . , AgnB E # G (A, B)!
|
n |
|
|
|
|
|
i |
|B : B ∩ gi−1Agi|. |
|
|G : A| = |
|
|
=1 |
|
H K E #
G ! H = K > G
S !
G = H ◦ S = S ◦ K,
# G 2 G K
2 G = H ◦ S! H ≤ G S G! !
G = S ◦ H # G
( J : C·,
p! # #
Zp∞! , #
p p∞
∞
. Zp∞ = n=1 Zpn
0 Zp∞ ! #
% + Zp∞ O
! G H1, H2, . . . , Hn, . . . !
" " " ! ! Hn Hn+1
∞
" n = 1, 2, . . . > n=1 Hn # G
" " " B "
# H Z+, Q+, Zp∞ !
" ! C·!
4 : O
# A Q+ # $
# #! B " #
$
$ 7 Q+
+ " Q+ O
X E G
G! X! G 0 ( !
' X X )
! = {1} X = X−1 ! X−1 = {x−1 | x X} I G = X !
! X ! G! !
G X! ! G
X I X = {a, b, . . . } X = X1 X2 . . . ! X
a, b, . . . X1, X2, . . .
4 '( " g 0 (
4 4 : A : "
" 0 (6 H
CG(g) := {x G | xg = gx} E g G (g G)!
Z(G) := CG(g) E G
g G
π E
π ! # !
π 7 ! π: ! π
π = {p} : π p p:
" p " : A
# G " 4 Ipa E p! |G|! a N! " G pa 4 p
A 0 6 ! " p
" p! 4 >
" " # # D & (- (/ ( 2
! : # " #
p! |
p |
|||||
Epn := Zp × . . . × Zp |
(p E ! n N). |
|||||
|
|
|
|
|
|
n
2 ! o(g) : g
A : , D2n D∞