Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Белоногов. Задачник по теории групп

.pdf
Скачиваний:
69
Добавлен:
25.03.2015
Размер:
1.35 Mб
Скачать

! |A| |B|! |B| = |A||C|

C

< " A B G "

AB := {ab | a A, b B} E A B,

A1 := {a1 | a A}, An := A · · · A n N.

n

"

A : , H Q8 . .8

Zp. &5

I H ≤ G!

( $ H $# GD

. : ! # : h H H! h

G

X E G ; H

( X ≤ G!

. XX X1 X xy X " x, y X x1 X

x X 0 XX1 X! % X1X X!

& Xx = X " x X! 5 xX = X " x X

X E G ! XX X X E G

( I X : ! X ≤

G

. A X # G

" G

# G

g E : G g := {gm | m Z}. ( g E $ G.

. I H ≤ g m E !

gm H! H = gm .

0 I o(g) = n N, g = {1, g, . . . , gn−1}.

J

O

! G E ! g G o(g) = n = ∞. ( I gm = 1! m | n.

. I k E $ ! o(gk) = ( n ) .

n,k

" G = a E $ n

k, m Z

( am = a(m,n) .

. ak am (m, n) | k.

0 ) G G !

" m n G

mD

G #

n.

% L G

# > = H ≤ G ·{Hgi | i J} E

. G H Hgi = Hgi i = j >

( G = Hgi

i J

. |G| = |H| |G : H|. A ! G E ! |H|

|G|.

$ . 8!

: # : #

7 $#

) # H Z4! Z2 × Z2! Z6!

S3

) ( . 0

# G! XX X C

" # & : X X CO

) Z+ L 4

G ! " k N Z+

k.

7 Z+ , #

+ " : # O

! ( A $#

. L g gm m Z

" ( I H ≤ G g G, g1Hg := {g1hg | h H} ≤ G.

g1Hg " H G

. 3 4 , "

G

0 G 4 H !

H " # 4 !

H " # 4

# A B E G ; H ( AB BA!

. AB = BA!

0 AB ≤ G

$ G < A, B, H E G !

G = AB A ≤ H ≤ G. > H = A(B ∩ H).

A B E : GABA A > AB BA E G ! A # #

BA # # AB.

A B E G ;

H

( ABA A!

. A ≤ G B A

J

B O

A, B, C, D E G !

A B = C D.

>

{A, B} = {C, D}!

E G

A B! E C D

G A B !

G \ A B k : ( 7 G

. |A ∩ B| k k ≥ |(A \ A ∩ B)(B \ A ∩ B)|

0 G k {1, 2}O

) !

" !

" " !

" !

"

! ) ! "

" !

" n E M E n × n

$ / (! " # " $

$ > M E GLn(C)!

, # Sn

# A $

 

1

0

,

i 0

,

 

0

1

,

 

0 i

,

±

0

1

 

± 0 −i

 

±

1

0

 

±

i 0

 

i2 = 1! " GL2(C)

Q8! , #

$ M = {1, −1, i, j, k, −i, −j, −k} CC

: · E

$ M! $#H

 

·

1 1

i

j

k −i −j −k

1

1 1

i

j

k −i −j −k

 

1

1

1 −i −j −k

i

j

k

 

i

i −i −1

k −j

1

−k

j

 

j

j −j −k −1

i

k

1 −i

 

k

k −k

j −i −1 −j

i

1

 

−i

−i

i

1 −k

j −1

k −j

 

−j

−j

j

k

1

−i −k −1

i

 

−k

−k

k −j

i

1

j −i −1

( (M, ·) E ! ,

Q8

 

 

 

 

. ) : : # 4

A B E G

( I Ag Bh g, h G! A ≤ B

. I A1 B1 E B

A B ! A1∩B1 B

A ∩ B.

M E G ; H

( " g G gM = M, gM ∩ M = , . MM1M = M!

0 M # # G

I M : G !

Mn = M n ≥ 2! Mn−1 ≤ G M E #

Mn−1

M E G > H :=

{g G | Mg = M}! # G! 4 MH = M

|M| ! |H| |M|

I M G B

H1

B

H2! G B

H1, H2

< A B G

H

( |AB| = |A|D

. A B

BB1

! I M E G!

m M Mm1

 

m M m1M E G.

 

 

 

" H ≤ G g G ; H

( gHg H!

 

 

. H gH ≤ G.

 

 

# I G

B

H1, . . . , Hn (n N)! # #

: Hi # G

$ A1 · · · An A1, . . . , An G

A1 ◦ · · · ◦ An!

# : x A1 · · · An "

x = a1 · · · an! ai Ai (1 ≤ i ≤ n)

( I A ≤ G! G = A ◦ S ! G = S ◦ A)

"! S

! G A

. A B

! A ∩ B = 1

0 A1, . . . , An G

! |A1 · · · An| = |A1| · · · |An|

% (A ◦ B) ◦ C = A ◦ (B ◦ C)! ABC = (A ◦ B) ◦ C! ABC = A ◦ (B ◦ C)! D : ABC = A ◦ B ◦ C

& I A = A1 ◦ · · · ◦ An! B = B1 ◦ · · · ◦ Bm AB = A ◦ B!

AB = A1 ◦ · · · ◦ An ◦ B1 ◦ · · · ◦ Bm

5 x(A ◦ B)y = (xA) (By) " x, y G.

ϕ E , G H A ≤ B ≤ G.

> Aϕ ≤ Bϕ ≤ H |Bϕ : Aϕ| = |B : A|.

Z+ × Z+ Z+.

A ≤ B ≤ G ! G = S1◦B B = S2◦A (S1 G, S2 G) G = (S1 ◦S2) ◦A A ! |G : A| = |G : B|·|B :

A|

A B E G

( I A = S ◦ (A ∩ B)! AB = S ◦ B

. I AB = S ◦ B S A! A = S ◦ (A ∩ B) 0 I A B !

|A| · |B| |AB| = |A ∩ B| .

I A B E G! A = (A ∩ B) ◦ S1

B = (A ∩ B) ◦ S2 ! AB = (A ∩ B) (S1 ◦ S2).

:

( H E n G >

" # A G |A : A ∩ H|

n : |A : A ∩ H| = n !

AH = G

. I A, B, C E G A ≤ B! |B ∩C : A∩C| ≤ |B : A|

! I A B " G!

A ∩ B # G! 4

|G : A ∩ B| ≤ |G : A| · |G : B|.

; ! G = AB

" I A1 ≤ A ≤ G B1 ≤ B ≤ G!

|A ∩ B : A1 ∩ B1| ≤ |A : A1||B : B1|.

# H E G G = H ◦ T ! T G I T T T ! T E G

$ G E T E # # G

# 4 # T

" : " : G \ T

G. 2 # G.

A B E G > #

AgB (g G) "

A1gB1 AhB, A1, B1, A, B E g, h E : G A ! A1 ≤ A B1 ≤ B O

A B E G g G

( AgB = A ◦ S! S G |S| = |B : B ∩ g1Ag|.

. AgB = T ◦ B! T G |T | = |A : gBg1 ∩ A|.

0 I Ag1B, . . . , AgnB E # G (A, B)!

 

n

 

 

 

 

i

|B : B ∩ gi1Agi|.

 

|G : A| =

 

=1

 

H K E #

G ! H = K > G

S !

G = H ◦ S = S ◦ K,

# G 2 G K

2 G = H ◦ S! H ≤ G S G! !

G = S ◦ H # G

( J : C·,

p! # #

Zp! , #

p p

. Zp= n=1 Zpn

0 Zp! #

% + ZpO

! G H1, H2, . . . , Hn, . . . !

" " " ! ! Hn Hn+1

" n = 1, 2, . . . > n=1 Hn # G

" " " B "

# H Z+, Q+, Zp!

" ! C·!

4 : O

# A Q+ # $

# #! B " #

$

$ 7 Q+

+ " Q+ O

X E G

G! X! G 0 ( !

' X X )

! = {1} X = X1 ! X1 = {x1 | x X} I G = X !

! X ! G! !

G X! ! G

X I X = {a, b, . . . } X = X1 X2 . . . ! X

a, b, . . . X1, X2, . . .

4 '( " g 0 (

4 4 : A : "

" 0 (6 H

CG(g) := {x G | xg = gx} E g G (g G)!

Z(G) := CG(g) E G

g G

π E

π ! # !

π 7 ! π: ! π

π = {p} : π p p:

" p " : A

# G " 4 Ipa E p! |G|! a N! " G pa 4 p

A 0 6 ! " p

" p! 4 >

" " # # D & (- (/ ( 2

! : # " #

p!

p

Epn := Zp × . . . × Zp

(p E ! n N).

 

 

 

 

 

 

n

2 ! o(g) : g

A : , D2n D