Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Белоногов. Задачник по теории групп

.pdf
Скачиваний:
69
Добавлен:
25.03.2015
Размер:
1.35 Mб
Скачать

! ) p! " $

" "

! P p I P

! P p + 1 "

cl(P ) = 2

! I P p2! P

" p2 w x yuz*adh

! ! (-(- "

O

! " 3 " # p P H

( P E ! #

P E J K J H . |G : Z(P )| = p2 Z(P ) = Φ(P ) D

0 P = a, b a, b P |P | = p

! # p P # J K J

! " H

Q8 D

a pm+1 b pn , ab = a1+pm D

( a pm × z p) b pn , ab = az, zb = z! n ≥ m ≥ 1

x {*`*d! (8%-

!$ < P J K J (-.8 # Z(P )! P ! Φ(P )! Ω1(P ) P A

1(P ) Z(P ) O

! P E p ! CG(a) = CG(am) " : a P " # am = 1! P

! : p = 3

! I P/Z(P ) $" p! P/Z(P )

, Ep2 D2n

! P/Z(P ) E4 > P E J J !

P = Z(P ) T ! T Q8 T D8 +

! P E

. > " # "$

j P \ Z(P ) CP (j)

#

! 2 # !

#

! > P E pn

( I P p! P E $

. I P pm! 1 < m < n! P E $

! ! G E ! 1 < H < G H ≤ g

g G \ H > G E $ p p ≥ 2! G Q2n|H| = 2

! " > G E

! # # > G E

4 ! # 4

$! . , Q8

Q8 × E2m m ≥ 1 +

! # ( 7 Mpn pn = 8

4

. ) 4

# H Q16 ! Q8 × Z4 ! Q8 Z4 ! D8 D16

 

2 n

1

2

 

 

n 1

 

 

2

 

n×1 2

 

n 1

!$

P Z

n

Z

 

 

n 2

!

 

P = ( a

n

 

b

n

) c 2

ac = b a1 = a2 ! b1 = b2 ! z = a1b1 (= (ab)2

= (a1b)2 )

( |P | = 22n+1! exp(P ) = 2n+1

 

 

 

 

 

 

 

 

 

. Z(P ) = ab 2n !

P/Z(P ) D2n+1

 

 

 

 

 

 

 

 

0 cl(P ) = n + 1

P/P Z2n × Z2

 

 

 

 

 

 

 

 

% P = a1b 2n !

 

 

 

 

 

 

 

 

& Φ(P ) = a2 × ab = a2 × a1b

 

 

 

= a × b !

5 P H

M1

M2 = ( a2 × ab ) c M3 = a2 ac

 

 

 

 

 

 

- P 0 4 "$#H {z}! {a1, b1} cP = P c

6 T := a1 × a2 E4 T P

8 T1 := z × c E4 P !

T ! T1

(/ # : P \ M1 4 P : a c!

:

a c P ! (aic)P = (aic) a = P aic

 

 

i Z o(aic) = 2o(ai) = 2n+1/(2n, i)

(( P \M1 dG : %! d = a1c (. P c D2n+1

(0 Q := P d Q2n+1! Q = dP P Q E

P ! , Q2n+1

(% Ω1(P ) = T Q P/1(P ) Z2n−1

(& P = Q ac ! (ac)2 = ab

(5 M2 = Z(P )Q Z2n Q2n+1

(- I Q < H < P ! H = Z(H)Q T ≤ H

(6 I H E P ! Z(H) ≤ Z(P )

(8 I X A ≤ P ! X E $ P A E $ 2n P ! P = X A

./ m(P ) = 2 rs(P ) = 3

! P E D8 × Z2! Q8 × Z2! D8 Z4 2 #|P | exp(P )!

Z(P )! P ! Φ(P )!

P !

"$ Ω1(P )!

m(P ) rs(P )

A P $ :$O

! P {D8 × D8, D8 × Q8, Q8 × Q8} 2 # Z(P )! P ! Φ(P )!

: P ! Ω1(P )! d(P )! m(P ) rs(P ) 3 ! , E2m(P )! P O

! |P | = 16 m(P ) = 3 > P E

" H

( P = ( a 2 × b 2) c 4! ac = b! bc = aD

. P Z2 × D8

!

 

A # Z(P )! P

 

Φ(P )!

1(P )

 

 

! I H = a, b ≤ P (a, b P ) [P, H] = H Zp!

G = HCG(H) A

! > 7 pn :$# #

! $

B 4 $ p3

n = 2r + 1! r E #

! ( D8 Z4 Q8 Z4

. D8 D8 Q8 Q8

! ! ( < ! D8 D8 D8 Q8! :

! # P {D8 D8, D8 Q8} #|P | exp(P )!

Z(P )! P ! Φ(P )!

P !

"$ Ω1(P )!

m(P ) rs(P )

. 7 P = D8 D8

Q E ! P = Q E!

Q Q8 E E4

 

0 7 P = D8 Q8

,$ . F !

P Z(P )

! " 7 P = D8 D8 D8

P = E V ! E E16

V E8

! # ( p

. p 2 p > 2

0 . !

!$ P E

p > " n N

" x1, . . . , xm P

n

 

 

n

n

(x1 . . . xm)p

n

= x1p

n

t1p

 

 

. . . xmp

 

. . . tkp , ti x1, . . . , xm , k N.

n

! H = x1, . . . , xn ! n ≥ 1 ∩ xi = 1 >

i=1

G #! G/Z(G) H

! I Z(P ) Z(P/ 1(Z(P ))) E $ !

P $

! P = E x ! E E8 o(x) = 2 > |CP (x)| ≥ 4

! P = E x ! E E2n (n ≥ 1) o(x) = 2 >

( C

E

(

x

) [

x, E]!

 

 

 

 

 

 

 

2

[ n+1

]

 

 

 

 

 

. |CE (x)| ≥

2

 

 

 

 

 

 

! 7$ |CE (x)| #

#!

"

n ≥ 1

 

P = E x

!

E E2

n !

 

 

 

 

 

 

[ n+1 ]

 

 

o(x) = 2 |CE (x)| = 2

2

 

 

 

 

!

< # p P k

H

 

 

 

 

 

 

 

 

 

 

 

 

( SCNk(P ) = !

 

 

 

 

 

. P E " ! , " Epk

 

 

! ! I P E . SCN3(P ) = !

" # "$

t P SCN3(CP (t)) =

 

 

 

 

! " P " ! , " E8

SCN3(P ) = > P ! ,

E4! # # P ! , # E8

! # ( I J(P ) ≤ H ≤ P ! J(H) = J(P )

. J(P ) " # P ! #

0 Z(P )! P ! Φ(P )! Ω1(P ) 1 " #

. J(P )?

! $ P Syl2(Hol(E8)) > ( P = E D! E E8 D D8D

. J(P ) E16

- 2 p7 8 9 %

p7 :

A " : , p ! P E p

m, n E ) ! p

! B , (-

" H E G

( ) ϕ : α → α|H (α Aut(G)) ,

Aut(G) Aut(H) Ker(ϕ) = CAut(G)(H) 3 !

Aut(G)/CAut(G)(H) ≤ Aut(H).

. ) ψ : α → αˆ (α Aut(G))! αˆ : gH → gαH

g G! , Aut(G) → Aut(G/H) Ker(ψ) =

CAut(G)(G/H) (= {α Aut(G) | gα gH g G} ) 3

!

Aut(G)/CAut(G)(G/H) ≤ Aut(G/H).

" > P E pn d = d(P ) ( 3 ,

γ: Aut(P ) → Aut(P/Φ(P )) GLd(Zp),

p !

γ: α → αˆ (α Aut(P )), αˆ : gΦ(P ) → gαΦ(P ),

! ! Ker(γ) = CAut (P )(P/Φ(P ))

. |CAut (P )(P/Φ(P ))| pd(n−d)

|Aut (P )| pd(n−d)(pd 1)(pd − p) . . . (pd − pd−1).

" > A E p Aut(P )

( A ≤ Aut(P/Φ(P ))

. P = [P, A]CP (A) [P, A] = [[P, A], A]

0 I P ! P = [P, A] × CP (A)

% I A $ # # P !

A = 1

" G = a pn b m! p m > b G!

CG(b) = b

" > I P E ! A E p Aut(P ) A

$ Ω1(P )! A = 1

 

"

G = P H! P Sylp(G)! NG(H) G > P =

[P, H] CP (H)! E $

'(% ! H [P, H] H

 

 

 

 

=

 

(

H

)

E ! P E p!

" ! G P

 

t

H E p

 

t E "$ G ! t $

P > [H, t] $ P

" " > P = x Zpn

( Aut (P ) E pn−1(p − 1)

. I p > 2! Aut (P ) $ 4

, α! xα = x1+p

0 I p = 2 n

2! Aut (P ) = α

2n−2

β

2! xα = x5

xβ = x1

 

 

×

 

% CAut (P )(P/Φ(P ))O

" # Hol(Zpn ) Z+pn ϕ Z·pn ! xϕ(y) = xy x Z+pn y Z·pn

"$ I G = a 169 ( b 15! G = ( a b5 ) × b3

" I P Z2m × Z2n m > n! Aut (P ) E .

" Aut(Z4 × Z2) O

" P = a 2m × b 2 m > 2 > |Aut (P )| = 2m+1

Aut (P ) = (( α 2m−2 × β 2) γ 2) × δ 2,

p

(a, b)α = (a5, b)! (a, b)β = (ab, b)! (a, b)γ = (a, a2m−1 b)! (a, b)δ = (a1, b)

:

αγ = α, βγ = α2m−3 β, α × β × δ = CAut(P )(Ω1(P )).

" I P Zpm × . . . × Zpm ! Aut (P ) GLn(Zpm ) 5 ./

 

 

 

$

" P = a1 pm × . . . × an pm

 

 

 

 

 

 

 

 

 

 

( P = a1x1 × . . . × anxn

" xi Φ(P )

 

 

 

 

 

 

. Z # (b1, . . . bn) : P

!

P = b1 × . . . × bn ! |GLn(p)| · |Φ(P )|n

 

 

 

!

 

 

 

 

n

0 Aut P

 

/C

 

GL

 

! C

 

C

 

P/

 

P

 

C

 

P

 

p(m−1)n2

(

)

 

 

 

n(Zp)

 

:=

 

Aut (P )(

 

Φ(

 

))

 

| |

= |Φ(

 

)|

=

"

P = a 4 × b 4 A = Aut (P )

 

 

 

 

 

 

 

 

 

( ) ϕ (a, b)ϕ = (ab, ab1)

, P

. |A| = 25 · 3

0 A " .

T:= ( α 2 × β 2) ( γ 4 δ 2),

(a, b)α = (a1, b)! (a, b)β = (a, b1)! (a, b)γ = (b, ab2)! (a, b)δ = (b, a)

: γ δ D8! αγ = αδ = β! βγ = βδ = α

% O2(A) = α×β×γ2×γδ = CAut(P )(P/Φ(P )) = CAut(P )(Φ(P ))

& T E4 Z2

5 A = O2(A) S! S S3

" ! ( Aut(D2n ) E . n ≥ 3! ! Aut(D2n )

Hol(Z2n )

. Aut(D8) D8

" " ( Aut(Q2n ) E . n > 3!

. Aut(Q8) S4

" # P D8 × Z2

( |Aut(P )| = 26 = 64

. Out(P ) D8 × Z2

0 A Aut(P ) E! , E16

CAut(P )(P/Φ(P )) E8

"$ P Q8 × Z2

( |Aut(P )| = 26 · 3

. 3 . Aut(P ) E F ! E E16

F E4

" P Mpn > Aut(P )

! ! Aut(P )/Op(Aut(P )) ≤ Zp−1 × Zp−1 A ! Aut(M2n ) E .

" P E(p)! P = ( a p × z p) b p! p > 2! z Z(P )

ab = az > Aut(P ) Hol(Ep2 )

" G = E ( x n τ 2)! E E2m ! x τ D2n M

4 n x # E E x E

9 E > |CE (τ )| = |E|1/2 "$ E τ \ E τ E τ

" G = P A! P Sylp(G) B ≤ P I A $

B CP (B)! A $ P

" A×B > A×B ≤ Aut(P )! A E p !

B E p I A $ CP (B)! A = 1

" P, A, B E # G ! P G! P B E p! A = Op(A) [A, B] = 1 > [Cp(B), A] = 1![P, A] = 1

" ! B ≤ P G! P E p Cp(B) B > Op(CG(B))

CG(P )

" " G = P R! P Sylp(G) I R $

P/Z(P ) [P, R] Z(P )! P = [P, R] × CP (R)

" # G = T S! |S| = 3 T , #

Z4! E4! Q8! D8 > G = T × S! T = [T, S]

"$ Hol (Q8) = Q (E S)! Q Q8! E E4! S S3! E S S4Q E Q8 Q8

" G = Q R! Q Syl2(G) Q Q2n (n ≥ 3) >

CR(Q) = 1 R # Q! R = 1!

G SL(2, 3)

" P D8 D8 ( Q8 Q8)

( P ! , Q8

. |Aut (P )| = 27 · 3 Aut (P )/Inn (P ) S3 Z2

0 B E 0 Aut(P )! # "

P/Z(P ) > " "$

P ! B!

" P D8 Q8

( P ! , # E8

. P , &

0 3

P " Z5

" P = H1 × . . . × Hn! Hi D2m (n, m N, m ≥ 3)

Z(Hi) = zi

( # : Aut (P ) $

{z1, . . . , zn}

. {α Aut (P ) | ziα = zi i {1, . . . , n}} . Aut (P ) " > p > 2 A E p Aut(P ) I A $

1(P )! A = 1

" A GL2(Zp) ! , E8

" ! G = P E! P E p! p > 2! E E2n ! n ≥ 3 I CE (P ) = 1! E # : SCN3(P )

" " p > 2 P = a, b, c ap2 = bp3 = cp4 = 1, ba = b1+p2, cb = c1+p3 , ac = a1+p >