
Белоногов. Задачник по теории групп
.pdf! ) p! " $
" "
! P p I P
! P p + 1 "
cl(P ) = 2
! I P p2! P
" p2 w x yuz*adh
! ! (-(- "
O
! " 3 " # p P H
( P E ! #
P E J K J H . |G : Z(P )| = p2 Z(P ) = Φ(P ) D
0 P = a, b a, b P |P | = p
! # p P # J K J
! " H
Q8 D
a pm+1 b pn , ab = a1+pm D
( a pm × z p) b pn , ab = az, zb = z! n ≥ m ≥ 1
x {*`*d! (8%-
!$ < P J K J (-.8 # Z(P )! P ! Φ(P )! Ω1(P ) P A
Ω1(P ) Z(P ) O
! P E p ! CG(a) = CG(am) " : a P " # am = 1! P
! : p = 3
! I P/Z(P ) $" p! P/Z(P )
, Ep2 D2n
! P/Z(P ) E4 > P E J J !
P = Z(P ) T ! T Q8 T D8 +
! P E |
. > " # "$ |
j P \ Z(P ) CP (j) |
# |
! 2 # !
#
! > P E pn
( I P p! P E $
. I P pm! 1 < m < n! P E $
! ! G E ! 1 < H < G H ≤ g
g G \ H > G E $ p p ≥ 2! G Q2n|H| = 2
! " > G E
! # # > G E
4 ! # 4
$! . , Q8
Q8 × E2m m ≥ 1 +
! # ( 7 Mpn pn = 8
4
. ) 4
# H Q16 ! Q8 × Z4 ! Q8 Z4 ! D8 D16
|
2 n |
1 |
2 |
|
|
≥n 1 |
|
|
2 |
|
n×1 2 |
|
n 1 |
|||
!$ |
P Z |
n |
Z |
|
|
n 2 |
! |
|
P = ( a |
n |
|
b |
n |
) c 2 |
||
ac = b a1 = a2 − ! b1 = b2 − ! z = a1b1 (= (ab)2 − |
= (a−1b)2 − ) |
|||||||||||||||
( |P | = 22n+1! exp(P ) = 2n+1 |
|
|
|
|
|
|
|
|
|
|||||||
. Z(P ) = ab 2n ! |
P/Z(P ) D2n+1 |
|
|
|
|
|
|
|
|
|||||||
0 cl(P ) = n + 1 |
P/P Z2n × Z2 |
|
|
|
|
|
|
|
|
|||||||
% P = a−1b 2n ! |
|
|
|
|
|
|
|
|
||||||||
& Φ(P ) = a2 × ab = a2 × a−1b |
|
|
|
= a × b ! |
||||||||||||
5 P H |
M1 |
|||||||||||||||
M2 = ( a2 × ab ) c M3 = a2 ac |
|
|
|
|
|
|
- P 0 4 "$#H {z}! {a1, b1} cP = P c
6 T := a1 × a2 E4 T P
8 T1 := z × c E4 P !
T ! T1
(/ # : P \ M1 4 P : a c!
: |
a c P ! (aic)P = (aic) a = P aic |
|
|
i Z o(aic) = 2o(ai) = 2n+1/(2n, i) |
(( P \M1 dG : %! d = a1c (. P c D2n+1
(0 Q := P d Q2n+1! Q = dP P Q E
P ! , Q2n+1
(% Ω1(P ) = T Q P/Ω1(P ) Z2n−1
(& P = Q ac ! (ac)2 = ab
(5 M2 = Z(P )Q Z2n Q2n+1
(- I Q < H < P ! H = Z(H)Q T ≤ H
(6 I H E P ! Z(H) ≤ Z(P )
(8 I X A ≤ P ! X E $ P A E $ 2n P ! P = X A
./ m(P ) = 2 rs(P ) = 3
! P E D8 × Z2! Q8 × Z2! D8 Z4 2 #|P | exp(P )!
Z(P )! P ! Φ(P )!
P !
"$ Ω1(P )!
m(P ) rs(P )
A P $ :$O
! P {D8 × D8, D8 × Q8, Q8 × Q8} 2 # Z(P )! P ! Φ(P )!
: P ! Ω1(P )! d(P )! m(P ) rs(P ) 3 ! , E2m(P )! P O
! |P | = 16 m(P ) = 3 > P E
" H
( P = ( a 2 × b 2) c 4! ac = b! bc = aD
. P Z2 × D8 |
! |
|
A # Z(P )! P |
|
Φ(P )! |
Ω1(P ) |
|
|
! I H = a, b ≤ P (a, b P ) [P, H] = H Zp!
G = HCG(H) A
! > 7 pn :$# #
! $
B 4 $ p3
n = 2r + 1! r E #
! ( D8 Z4 Q8 Z4
. D8 D8 Q8 Q8
! ! ( < ! D8 D8 D8 Q8! :
! # P {D8 D8, D8 Q8} #|P | exp(P )!
Z(P )! P ! Φ(P )!
P !
"$ Ω1(P )!
m(P ) rs(P )
. 7 P = D8 D8 |
Q E ! P = Q E! |
Q Q8 E E4 |
|
0 7 P = D8 Q8 |
,$ . F ! |
P Z(P ) |
|
! " 7 P = D8 D8 D8 |
|
P = E V ! E E16 |
V E8 |
! # ( p
. p 2 p > 2
0 . !
!$ P E |
p > " n N |
||||||
" x1, . . . , xm P |
n |
|
|
n |
n |
||
(x1 . . . xm)p |
n |
= x1p |
n |
t1p |
|||
|
|
. . . xmp |
|
. . . tkp , ti x1, . . . , xm , k N. |
n
! H = x1, . . . , xn ! n ≥ 1 ∩ xi = 1 >
i=1
G #! G/Z(G) H
! I Z(P ) Z(P/ 1(Z(P ))) E $ !
P $
! P = E x ! E E8 o(x) = 2 > |CP (x)| ≥ 4
! P = E x ! E E2n (n ≥ 1) o(x) = 2 >
( C |
E |
( |
x |
) [ |
x, E]! |
|
|
|
|
|
|||
|
|
2 |
[ n+1 |
] |
|
|
|
|
|
||||
. |CE (x)| ≥ |
2 |
|
|
|
|
|
|
||||||
! 7$ |CE (x)| # |
#! |
||||||||||||
" |
n ≥ 1 |
|
P = E x |
! |
E E2 |
n ! |
|||||||
|
|
|
|
|
|
[ n+1 ] |
|
|
|||||
o(x) = 2 |CE (x)| = 2 |
2 |
|
|
|
|
||||||||
! |
< # p P k |
||||||||||||
H |
|
|
|
|
|
|
|
|
|
|
|
|
|
( SCNk(P ) = ! |
|
|
|
|
|
||||||||
. P E " ! , " Epk |
|
|
|||||||||||
! ! I P E . SCN3(P ) = ! |
" # "$ |
||||||||||||
t P SCN3(CP (t)) = |
|
|
|
|
! " P " ! , " E8
SCN3(P ) = > P ! ,
E4! # # P ! , # E8
! # ( I J(P ) ≤ H ≤ P ! J(H) = J(P )
. J(P ) " # P ! #
0 Z(P )! P ! Φ(P )! Ω1(P ) 1 " #
. J(P )?
! $ P Syl2(Hol(E8)) > ( P = E D! E E8 D D8D
. J(P ) E16
- 2 p7 8 9 %
p7 :
A " : , p ! P E p
m, n E ) ! p
! B , (-
" H E G
( ) ϕ : α → α|H (α Aut(G)) ,
Aut(G) Aut(H) Ker(ϕ) = CAut(G)(H) 3 !
Aut(G)/CAut(G)(H) ≤ Aut(H).
. ) ψ : α → αˆ (α Aut(G))! αˆ : gH → gαH
g G! , Aut(G) → Aut(G/H) Ker(ψ) =
CAut(G)(G/H) (= {α Aut(G) | gα gH g G} ) 3
!
Aut(G)/CAut(G)(G/H) ≤ Aut(G/H).
" > P E pn d = d(P ) ( 3 ,
γ: Aut(P ) → Aut(P/Φ(P )) GLd(Zp),
p !
γ: α → αˆ (α Aut(P )), αˆ : gΦ(P ) → gαΦ(P ),
! ! Ker(γ) = CAut (P )(P/Φ(P ))
. |CAut (P )(P/Φ(P ))| pd(n−d)
|Aut (P )| pd(n−d)(pd − 1)(pd − p) . . . (pd − pd−1).
" > A E p Aut(P )
( A ≤ Aut(P/Φ(P ))
. P = [P, A]CP (A) [P, A] = [[P, A], A]
0 I P ! P = [P, A] × CP (A)
% I A $ # # P !
A = 1
" G = a pn b m! p m > b G!
CG(b) = b
" > I P E ! A E p Aut(P ) A
$ Ω1(P )! A = 1 |
|
|||||
" |
G = P H! P Sylp(G)! NG(H) G > P = |
|||||
[P, H] CP (H)! E $ |
||||||
'(% ! H [P, H] H |
|
|
|
|||
|
= |
|
( |
H |
) |
E ! P E p! |
" ! G P |
|
t |
||||
H E p |
|
t E "$ G ! t $ |
P > [H, t] $ P
" " > P = x Zpn
( Aut (P ) E pn−1(p − 1)
. I p > 2! Aut (P ) $ 4
, α! xα = x1+p
0 I p = 2 n |
≥ |
2! Aut (P ) = α |
2n−2 |
β |
2! xα = x5 |
xβ = x−1 |
|
|
× |
|
% CAut (P )(P/Φ(P ))O
" # Hol(Zpn ) Z+pn ϕ Z·pn ! xϕ(y) = xy x Z+pn y Z·pn
"$ I G = a 169 ( b 15! G = ( a b5 ) × b3
" I P Z2m × Z2n m > n! Aut (P ) E .
" Aut(Z4 × Z2) O
" P = a 2m × b 2 m > 2 > |Aut (P )| = 2m+1
Aut (P ) = (( α 2m−2 × β 2) γ 2) × δ 2,
p

(a, b)α = (a5, b)! (a, b)β = (ab, b)! (a, b)γ = (a, a2m−1 b)! (a, b)δ = (a−1, b)
:
αγ = α, βγ = α2m−3 β, α × β × δ = CAut(P )(Ω1(P )).
" I P Zpm × . . . × Zpm ! Aut (P ) GLn(Zpm ) 5 ./ |
||
|
|
|
$
" P = a1 pm × . . . × an pm |
|
|
|
|
|
|
|
|
|
|
||||||||||
( P = a1x1 × . . . × anxn |
" xi Φ(P ) |
|
|
|
|
|
|
|||||||||||||
. Z # (b1, . . . bn) : P |
! |
|||||||||||||||||||
P = b1 × . . . × bn ! |GLn(p)| · |Φ(P )|n |
|
|
|
! |
|
|
|
|
n |
|||||||||||
0 Aut P |
|
/C |
|
GL |
|
! C |
|
C |
|
P/ |
|
P |
|
C |
|
P |
|
|||
p(m−1)n2 |
( |
) |
|
|
|
n(Zp) |
|
:= |
|
Aut (P )( |
|
Φ( |
|
)) |
|
| | |
= |Φ( |
|
)| |
= |
" |
P = a 4 × b 4 A = Aut (P ) |
|
|
|
|
|
|
|
|
|
( ) ϕ (a, b)ϕ = (ab, ab−1)
, P
. |A| = 25 · 3
0 A " .
T:= ( α 2 × β 2) ( γ 4 δ 2),
(a, b)α = (a−1, b)! (a, b)β = (a, b−1)! (a, b)γ = (b, ab2)! (a, b)δ = (b, a)
: γ δ D8! αγ = αδ = β! βγ = βδ = α
% O2(A) = α×β×γ2×γδ = CAut(P )(P/Φ(P )) = CAut(P )(Φ(P ))
& T E4 Z2
5 A = O2(A) S! S S3
" ! ( Aut(D2n ) E . n ≥ 3! ! Aut(D2n )
Hol(Z2n )
. Aut(D8) D8
" " ( Aut(Q2n ) E . n > 3!
. Aut(Q8) S4
" # P D8 × Z2
( |Aut(P )| = 26 = 64
. Out(P ) D8 × Z2
0 A Aut(P ) E! , E16
CAut(P )(P/Φ(P )) E8
"$ P Q8 × Z2
( |Aut(P )| = 26 · 3
. 3 . Aut(P ) E F ! E E16
F E4
" P Mpn > Aut(P )
! ! Aut(P )/Op(Aut(P )) ≤ Zp−1 × Zp−1 A ! Aut(M2n ) E .
" P E(p)! P = ( a p × z p) b p! p > 2! z Z(P )
ab = az > Aut(P ) Hol(Ep2 )
" G = E ( x n τ 2)! E E2m ! x τ D2n M
4 n x # E E x E
9 E > |CE (τ )| = |E|1/2 "$ E τ \ E τ E τ
" G = P A! P Sylp(G) B ≤ P I A $
B CP (B)! A $ P
" A×B > A×B ≤ Aut(P )! A E p !
B E p I A $ CP (B)! A = 1
" P, A, B E # G ! P G! P B E p! A = Op(A) [A, B] = 1 > [Cp(B), A] = 1![P, A] = 1
" ! B ≤ P G! P E p Cp(B) B > Op(CG(B))
CG(P )
" " G = P R! P Sylp(G) I R $
P/Z(P ) [P, R] Z(P )! P = [P, R] × CP (R)
" # G = T S! |S| = 3 T , #
Z4! E4! Q8! D8 > G = T × S! T = [T, S]
"$ Hol (Q8) = Q (E S)! Q Q8! E E4! S S3! E S S4Q E Q8 Q8
" G = Q R! Q Syl2(G) Q Q2n (n ≥ 3) >
CR(Q) = 1 R # Q! R = 1!
G SL(2, 3)
" P D8 D8 ( Q8 Q8)
( P ! , Q8
. |Aut (P )| = 27 · 3 Aut (P )/Inn (P ) S3 Z2
0 B E 0 Aut(P )! # "
P/Z(P ) > " "$
P ! B!
" P D8 Q8
( P ! , # E8
. P , &
0 3
P " Z5
" P = H1 × . . . × Hn! Hi D2m (n, m N, m ≥ 3)
Z(Hi) = zi
( # : Aut (P ) $
{z1, . . . , zn}
. {α Aut (P ) | ziα = zi i {1, . . . , n}} . Aut (P ) " > p > 2 A E p Aut(P ) I A $
Ω1(P )! A = 1
" A GL2(Zp) ! , E8
" ! G = P E! P E p! p > 2! E E2n ! n ≥ 3 I CE (P ) = 1! E # : SCN3(P )
" " p > 2 P = a, b, c ap2 = bp3 = cp4 = 1, ba = b1+p2, cb = c1+p3 , ac = a1+p >