
Белоногов. Задачник по теории групп
.pdfG E ! "
, δ . >
( G E 4 !
. δ # : G #
0 Inn(G), δ D(Inn(G)).
Z(G) Φ(G) E G
:
! A ≤ B ≤ G! A B E
G !
( A B!
. B/A G/A
" I ϕ Aut(G), N G ϕ $ N !
gϕg−1 CG(N ) g G
ϕ $ G/CG(N )
# G = AB, A G, CB (A) = 1, ϕ Aut(G), ϕ $
A B > ϕ = 1
$ α E # # ,
# G! N G α $ ,
N G/N > : x = 1 N #! o(x)
o(α)
( CAut(G)(Inn(G)) = CAut(G)(G/Z(G)). , α
G " ! gαZ(G) = gZ(G)
g G 3 ! , H
, G !
$
. I Z(G) = 1! Z(Aut(G)) = 1
I G E ! Aut(G) E
I H E H G! G = H × C!
C ≤ G
" G! " " : , αKer(α) = 1! " # ,
G = A ×B = A ×C ) ϕ : G → G
" # : g G
g = ab! a A! b BD : b
b = a1c! a1 A! c C
gϕ = a1 ) ! ! α : g → (gϕ)−1g G
!
( ϕ End(G)! Gϕ = Bϕ ≤ Z(G)!
. α Aut(G), Aα = A, Bα = C
A B E ! α E , A B! β E
, B A I αβ Aut(A)! B = Ker(β) Aα
! G E ! n E $ αn E
g → gn (g G) ( I G !
αn Aut(G) (o(g), n) = 1 g G.
. I n {−1, 2, 3} αn Aut(G)! G
" n Z 7 G n !
xnyn = (xy)n x, y G,
αn : g → gn (g G) : , G
( n nm# " m N.
. A n# " # π(n): " π(n) : π(n) E ! n! π(n) E
# I G E 4 ! α Aut(G) o(α) = 2!G = G1 · G−1! G1 = {g G | gα = g}, G−1 = {g G | gα = g−1}

$ G E ! α Aut(G) o(α) = p E
I α # 4 :
G! p | |G|
G E A E Aut (G)
! ϕ : g → g|A|(g G) , G
3 (( %- : ! G E
(o(g), |A|) = 1 g G. ) # , ϕ−1
|1 | !
A
θ:= |A| α A α.
( θ End (G)
. θα = αθ = θ α Aut (G)! θ2 = θ 0 G = Gθ × Kerθ
% Gθ = CG(A)
& Kerθ = G1−θ = {g−1gθ | g G}. e fdggdhi
I α E # : , G! −1+α : g → g−1gα (g G) : , G
G H E Ω, Ω > CΩ(G) =
CΩ(H)
I A/A1 B/B1 E G, G $
G , A/A1 B/B1 #! ϕ(agA1) =
ϕ(aA1)g a A g G! CG(A/A1) = CG(B/B1)
(
I a b E : G! :
[a, b] := a−1 b−1 ab ) ! :a b !
[a, b] $ ! 4
: G G
G I A B E G!
[a, b] | a A, b B A B
[A, B] " n ≥ 3 : x1, . . . , xn G "
[x1, . . . , xn] := [[x1, . . . , xn−1], xn]
< A ≤ Aut(G) H ≤ G
[H, A] := h−1hα | h H, α A .
> < " : a, b, c "
H ( [a, b]−1 = [b, a]!
. [a, b−1] = [b, a]b−1! 0 [a−1, b] = [b, a]a−1!
% [a, bc] = [a, b] [ab, c] = [a, c] [a, b]c!
& [ab, c] = [b, ca] [a, c] = [a, c]b [b, c]! 5 [a, b] = [b−1, ab]!
- A H [[a, b−1], c]b · [[b, c−1], a]c · [[c, a−1], b]a = 1
ϕ E , G! a, b E 4 : A, B E 4
( [a, b]ϕ = [aϕ, bϕ] (G )ϕ = (Gϕ) |
|
[A, B] Ker ϕ. |
||||
. Aϕ Bϕ : |
||||||
0 7 Gϕ |
|
G |
|
Ker ϕ |
G |
|
% G E |
|
|
|
|||
|
|
|
|
= 4 A, B C E
G > $ " [[A, B], C], [[B, C], A], [[
4 $ #
I A B E G ! [A, B] Z(G)![A, B ] = [A , B] = 1
H ≤ G
( H Z(G) [H, G] = 1
. H G [H, G] H
0 H G G/H G H
[a, G] = [G, a] G " : a G
! I G E ! |G : G | ≤ |G : [a, G]| ≤ |CG(a)|
" a G
" I 4 : G
# # G!
G
# M E G a G I M Ma E
G! M B
[a, G]
$ A B E G
( [AB, G] = [A, G][B, G].
. I A B E G! [A, B] = [ A , B ] 0 I [A, B] N G! [ A , B ] N
I M G! MG E G
A ! H |
≤ |
G! HG G |
|
|
|
|
|
< |
" a, b G " n N a−nb−n(ab)n G |
||
< |
" # (g1, . . . , gn) : |
G (n N) " # π Sn : g1 . . . gn gπ(1) . . . gπ(n)
G .
G = A, B ! A B E G > ( [A, B] G!
. A[A, B] G B[A, B] G!
0 G = AB[A, B]! % G = A B [A, B]
I G = a, b ! a b E : G! G = [ a , b ]
G E ! H ≤ G M G ;
H ( H [H, M]!
. H [H, M ]!
0 H H, M
!
" :
" 2 # # H S3! Q8! D2nD∞
# A Sn " |
$! |
||||||||||
" H |
|
||||||||||
( [(i j k), (i j l)] = (ij)(kl)! |
|
|
|
|
|
|
|
||||
. [(i j k), (i l j)] = (il)(jk)! |
|
|
|
|
|
|
|
||||
0 [(i j k), (i l m)] = [(ij), (il)] = (ilj) |
|
|
|
|
|||||||
$ 2 # A4 S4 |
|
||||||||||
> S |
= (A |
n |
) = A |
n |
|
n |
≥ |
5 |
|
||
n |
|
|
|
|
|
|
|
|
|||
# : A5 |
|
||||||||||
3 " |
|
||||||||||
GLn(F )! F E |
'5 H |
|
|||||||||
( [tij (α), tjk(β)] = tik(αβ) i, j, kD |
|
||||||||||
|
|
|
|
|
|
αβ |
|
|
|
|
|
. [tij (α), diag(β1, . . . , βn)] = tij ( |
i |
|
− α). |
|
|||||||
βj |
|
> F E n N
( SLn(F ) = SL(n, F )! |F | > 3 n > 2
. GLn(F ) = SLn(F )! |F | > 2 n > 2
2 # SL2(Z2) (= GL2(Z2) ) SL2(Z3)
(. .(! " !
" ! A5 2 #
" !
H
G E ! 4 : g1, . . . , gn > # : g G g = ϕ(g1, . . . , gn)! ϕ(g1, . . . , gn) E # $ : g1, . . . , gn " "
# : gi mi (i = 1, . . . , n) >
α1, . . . , αn E ! ( !
αimi = 1 H = α1, . . . , αn C· >
G H! , #
µ: g = ϕ(g1, . . . , gn) → ϕ(α1, . . . , αn),
, ! x = ϕ(g1, . . . , gn) y = ψ(g1, . . . , gn)
!
µ : xy = ϕ(g1, . . . , gn)ψ(g1, . . . , gn) → ϕ(α1, . . . , αn)ψ(α1, . . . , αn) = µ(x)µ(y)
> : gi " (! Kerϕ < G,
H ! (. . G Kerϕ. > ! G < G
! a, b G.
( [a, b] = [a, cb] = [da, b] " c CG(a) d CG(b).
. A [a, b] = [a, bc] = [ad, b] c d ?
" G E ! G : Z(G) 2 |
< G |
|
||
> G : ! |
" | |
| |
| | |
|
# G E |
h E # |
4 4 : > l
G h ≤ l ≤ h2
$ ( I N G N ∩G = 1! N Z(G) Z(G/N ) = Z(G)/N.
. A G
G !

G = X , X G, N G. I "
: X N, G N.
g G [G, g] Z(G)
( x → [x, g] (g G) , G [G, g]
CG(g) A ! G/CG(g) [G, g]
. 2 G/[G, g] CG(g)
G E ! A E 4
! g G > ϕ : a → [g, a] (a A)
, A [g, A] CA(g) A !
[g, A] = g−1gA |A| = |CA(g)| · |[g, A]|.
I [a, b] : a! ( [an, b] = [a, b]n " $ n!
. : a #! : [a, b]
#! 4 [a, b] a
I [a, b] a b!
m |
|
n |
|
|
mn |
|
|
|
m, n Z! |
||
( [a , b |
] = [a, b] |
|
n(n |
1) |
|
||||||
. (ab) |
n |
|
n n |
[b, a] |
− |
|
|
|
|
n N |
|
|
= a b |
2 |
|
|
|||||||
0 a, b = [a, b] ! |
|
|
|
|
|
|
|||||
I [a, b, b] Z( a, b )! |
[a, bn] = [a, b]n[a, b, b](n2) " |
||||||||||
n ≥ 2 |
|
|
|
|
|
|
|
|
|
|
|
! I x, y G! |
|
x2 = 1! |
[[x, y], x] = [y, x]2 |
||||||||
" I G = G , Z(G/Z(G)) = 1. |
|||||||||||
# I N G! |
|
[N, G ] = 1! CN (g) G " g G. |
$ G = A B A1 ≤ A. I B $ A1 ,
[A, B] CA(A1).
I G = A B! G = (A ∩ G ) (B ∩ G )! B ∩ G = B
K E G ! K ∩ Z(G) = 1 > " # # N G!
# K! KN/N ∩ Z(G/N ) = 1
I a G a G! CG(a) G
I A B E G A/B E $ ! NG(aB) G " a A
I G !
[[a, b], c] [[b, c], a] [[c, a], b] a, b, c G.
I P Sylp(G)! G = G NG(P )
! I G E G = p! p E !
( " q ! q ≥ p! q
G #D
. p E # # G! |gG| {1, p}
g G
" 7 ! # 4
" !
# G = AB! A B E G! a A!
A ∩ [a, B] = 1 > CG(a) = CA(a)CB(a)
$ I α E # ! ((j%(! $
# , G! α # G .
I A ≤ Aut(G), [G, A] E A
G.
I N G, α Aut(G) N CG(α), N CG([G, α]).
N G A ≤ Aut(G) I A $ N G/N !α $ G/Z(N ) [G, A] Z(N ) A E
I G E ! A E Aut(G)(|A|, |G|) = 1, G = CG(A) × [G, A]. e kQbb*hlQmb
4% 4 5 #
3 G
G0, G1, . . . , Gn G ! Gi ≤ Gi+1 |
i {0, . . . , n− |
1}! G0 = 1 Gn = G > # " |
|
1 = G0 ≤ G1 ≤ . . . ≤ Gn = G |
(1) |
|
|
G = Gn ≥ . . . ≥ G1 ≥ G0 = 1 |
(2) |
! $" " Z n
( I := {0, . . . , n−1} ; ( H
! Gi Gi+1 i ID
! Gi G i ID
! Gi E
Gi+1 i ID
! Gi E G Gi+1
i ID
! Gi G Gi+1/Gi Z(G/Gi) [G, Gi+1] Gi)
i I
I ( # ! , Gi+1/Gi
" ! |Gi+1 : Gi| E
H G! " " 4 !
" G H G
)
! , ! 4 " ,$"
7 G
"! # (
, Gi+1/Gi (i = 0, 1, . . . , n − 1)!
E 4 D
& "! # $
, D