
- •Раздел I общая физиология
- •Введение
- •Глава 2 физиология возбудимых тканей
- •Потенциал покоя
- •Природа потенциала покоя
- •Потенциал действия
- •Ионный механизм возникновения потенциала действия
- •О природе ионной проницаемости мембраны. Ионные каналы
- •Механизмы изменения ионной проводимости во время генерации потенциала действия
- •Механизм раздражения клетки (волокна) электрическим током
- •Критический уровень деполяризации
- •Локальный ответ
- •Зависимость пороговой силы раздражителя от его длительности
- •Явление аккомодации
Потенциал покоя
Термином «мембранный потенциал» (потенциал покоя) принято называть трансмембранную разность потенциалов, существующую между цитоплазмой и окружающим клетку наружным раствором. Когда клетка (волокно) находится в состоянии физиологического покоя, ее внутренний потенциал отрицателен по отношению к наружному, условно принимаемому за нуль. У различных клеток мембранный потенциал варьирует от —50 до —90 мВ.
Чтобы измерить потенциал покоя и проследить его изменения, вызываемые тем или иным воздействием на клетку, применяют технику внутриклеточных микроэлектродов (рис. 1).
Микроэлектрод представляет собой микропипетку, т. е. тонкий капилляр, вытянутый из стеклянной трубочки. Диаметр его кончика около 0,5 мкм. Микропипетку заполняют солевым раствором (обычно 3 М КС1), погружают в него металлический электрод (хлорированную серебряную проволочку) и соединяют с электроизмерительным прибором — осциллографом, снабженным усилителем постоянного тока.
Микроэлектрод устанавливают над исследуемым объектом, например скелетной мышцей, а затем при помощи микроманипулятора — прибора, снабженного микрометрическими винтами, вводят внутрь клетки. Электрод обычных размеров погружают в нормальный солевой раствор, в котором находится исследуемая ткань.
Как только микроэлектрод прокалывает поверхностную мембрану клетки, луч осциллографа сразу же отклоняется от своего исходного (нулевого) положения, обнаруживая
Рис.
1.
Измерение потенциала покоя мышечного
волокна (А) с помощью внутриклеточного
микроэлектрода (схема).
М
—
микроэлектрод; И
—
индифферентный электрод. Луч на экране
осциллографа (Б) показывает, что до
прокола мембраны микроэлектродом
разность потенциала между М и И была
равна нулю. В момент прокола (показан
стрелкой) обнаружена разность потенциалов,
указывающая, что внутренняя сторона
мембраны заряжена электроотрицательно
по отношению к ее наружной поверхности.
При удачном введении микроэлектрода мембрана плотно охватывает его кончик и клетка сохраняет способность функционировать в течение нескольких часов, не проявляя признаков повреждения.
Существует множество факторов, меняющих потенциал покоя клеток: приложение электрического тока, изменение ионного состава среды, воздействие некоторых токсинов, нарушение кислородного снабжения ткани и т. д. Во всех тех случаях, когда внутренний потенциал уменьшается (становится менее отрицательным), говорят о деполяризации мембраны; противоположный сдвиг потенциала (увеличение отрицательного заряда внутренней поверхности клеточной мембраны) называют гиперполяризацией.
Природа потенциала покоя
Еще в 1896 г. В. Ю. Чаговец высказал гипотезу об ионном механизме электрических потенциалов в живых клетках и сделал попытку применить для их объяснения теорию электролитической диссоциации Аррениуса. В 1902 г. Ю. Бернштейном была развита мембранно-ионная теория, которую модифицировали и экспериментально обосновали Ходжкин, Хаксли и Катц (1949—1952). В настоящее время последняя теория пользуется всеобщим признанием. Согласно указанной теории, наличие электрических потенциалов в живых клетках обусловлено неравенством концентрации ионов Na+ К+, Са2+ и С1- внутри и вне клетки и различной проницаемостью для них поверхностной мембраны.
Из данных табл. 1 видно, что содержимое нервного волокна богато К+ и органическими анионами (практически не проникающими через мембрану) и бедно Na+ и С1-.
Концентрация К+ в цитоплазме нервных и мышечных клеток в 40—50 раз выше, чем в наружном растворе, и если бы мембрана в покое была проницаема только для этих ионов, то потенциал покоя соответствовал бы равновесному калиевому потенциалу (Ек), рассчитанному по формуле Нернста:
где R — газовая постоянная, F — число Фарадея, Т — абсолютная температура, К.о— концентрация свободных ионов калия в наружном растворе, Ki — их концентрация в цитоплазме.
Таблица 1
Содержание ионов K+, Na+, Cl- , равновесные потенциалы, потенциалы покоя и действия некоторых клеток (по данным разных авторов)
Рис. 2. Возникновение разности потенциалов на искусственной мембране, разделяющей растворы K2S04 разной концентрации (C1 и С2).
Мембрана избирательно проницаема для ионов К'+ (маленькие кружки) и не пропускает ионы SO4-(большие кружки). 1,2 — электроды, опущенные в раствор; 3 — электроизмерительный прибор.
Чтобы понять, каким образом возникает этот потенциал, рассмотрим следующий модельный опыт (рис. 2).
Представим сосуд, разделенный искусственной полупроницаемой мембраной. Стенки пор этой мембраны заряжены электроотрицательно, поэтому они пропускают только катионы и непроницаемы для анионов. В обе половины сосуда налит солевой раствор, содержащий ионы К+, однако их концентрация в правой части сосуда выше, чем в левой. Вследствие этого концентрационного градиента ионы К+ начинают диффундировать из' правой половины сосуда в левую, принося туда свой положительный заряд. Это приводит к тому, что непроникающие анионы начинают скапливаться у мембраны в правой половине сосуда. Своим отрицательным зарядом они электростатически будут удерживать К+ у поверхности мембраны в левой половине сосуда. В результате мембрана поляризуется, и между. двумя ее поверхностями создается разность потенциалов, соответствующая равновесному калиевому потенциалу
(Ек).
Предположение о том, что в состоянии покоя мембрана нервных и мышечных волокон избирательно проницаема для К+ и что именно их диффузия создает потенциал покоя, было высказано Бернштейном еще в 1902 г. и подтверждено Ходжкиным с сотр. в 1962 г. в опытах на изолированных гигантских аксонах кальмара. Из волокна диаметром около 1 мм осторожно выдавливали цитоплазму (аксоплазму) и спавшуюся оболочку заполняли искусственным солевым раствором. Когда концентрация К+ в растворе была близка к внутриклеточной, между внутренней и наружной сторонами мембраны устанавливалась разность потенциалов, близкая к значению нормального потенциала покоя (—50——80 мВ), и волокно проводило импульсы. При уменьшении внутриклеточной и повышении наружной концентрации К+ потенциал мембраны уменьшался или даже изменялся его знак (потенциал становился положительным, если в наружном растворе концентрация К+ была выше, чем во внутреннем).
Такие опыты показали, что концентрированный градиент К+ действительно является основным фактором, определяющим величину потенциала покоя нервного волокна. Однако покоящаяся мембрана проницаема не только для К+ но (правда, в значительно меньшей степени) и для Na+. Диффузия этих положительно заряженных ионов внутрь клетки уменьшает абсолютную величину внутреннего отрицательного потенциала клетки, создаваемого диффузией К+. Поэтому потенциал покоя волокон (—50——70 мВ) менее отрицателен, чем рассчитанный по формуле Нернста калиевый равновесный потенциал.
Ионы Cl- в нервных волокнах не играют существенной роли в генезе потенциала покоя, поскольку проницаемость для них покоящейся мембраны относительно мала. В отличие от этого в скелетных мышечных волокнах проницаемость покоящейся мембраны для ионов хлора сравнима с калиевой, и потому диффузия Cl- внутрь клетки увеличивает значение потенциала покоя. Рассчитанный хлорный равновесный потенциал (Ecl) при соотношении Clo/Cli = — 85 мВ.
Таким образом, величина потенциала покоя клетки определяется двумя основными факторами: а) соотношением концентраций проникающих через покоящуюся поверхностную мембрану катионов и анионов; б) соотношением проницаемостей мембраны для этих ионов.
Для количественного описания этой закономерности используют обычно уравнение Гольд-мана — Ходжкина — Катца:
где Ем — потенциал покоя, Рк, РNa, PCl — проницаемости мембраны для ионов K+, Na+ и Cl- соответственно; Ko+, Nao+ и Clo-— наружные концентрации ионов K+, Na+ и Cl-, a Ki+, Nai+ и Cli-— их внутренние концентрации.
Было рассчитано, что в изолированном гигантском аксоне кальмара при ЕM== —50 мВ имеется следующее соотношение между ионными проницаемостями покоящейся мембраны:
Уравнение дает объяснение многим наблюдаемым в эксперименте и в естественных условиях изменениям потенциала покоя клетки, например ее стойкой деполяризации при действии некоторых токсинов, вызывающих повышение натриевой проницаемости мембраны. К таким токсинам относятся растительные яды: вератридин, аконитин и один из наиболее сильных нейротоксинов — батрахотоксин, продуцируемый кожными железами колумбийских лягушек.
Деполяризация мембраны, как это следует из уравнения, может возникать и при неизменной РNa, если повысить наружную концентрацию ионов K+ (т. е. увеличить отношение Ко/К). Такое изменение потенциала покоя является отнюдь не только лабораторным феноменом. Дело в том, что концентрация K+ в межклеточной жидкости заметно повышается во время активации нервных и мышечных клеток, сопровождающейся повышением РK.. Особенно значительно возрастает концентрация K+ в межклеточной жидкости при нарушениях кровоснабжения (ишемия) тканей, например ишемии миокарда. Возникающая при этом деполяризация мембраны приводит к прекращению генерации потенциалов действия, т. е. нарушению нормальной электрической активности клеток.
РОЛЬ ОБМЕНА ВЕЩЕСТВ В ГЕНЕЗЕ И ПОДДЕРЖАНИИ ПОТЕНЦИАЛА ПОКОЯ
(НАТРИЕВЫЙ НАСОС МЕМБРАНЫ)
Несмотря на то что потоки Na+ и K+ через мембрану в покое малы, разность концентраций этих ионов внутри клетки и вне ее должна была бы в конечном итоге выровняться, если бы в клеточной мембране не существовало особого молекулярного устройства — «натриевого насоса», которое обеспечивает выведение («выкачивание») из цитоплазмы проникающих в нее Na+ и введение («нагнетание») в цитоплазму K+. Натриевый насос перемещает Na+ и К+ против их концентрационных градиентов, т. е. совершает определенную работу. Непосредственным источником энергии для этой работы является богатое энергией (макроэргическое) соединение— аденозинтрифосфорная кислота (АТФ), являющаяся универсальным источником энергии живых клеток. Расщепление АТФ производится макромолекулами белка — ферментом аденозинтрифосфатазой (АТФ-азой), локализованной в поверхностной мембране клетки. Энергия, выделяющаяся при расщеплении одной молекулы АТФ, обеспечивает выведение из клетки трех ионов Na+ взамен на два иона K+, поступающих в клетку снаружи.
Торможение активности АТФ-азы, вызываемое некоторыми химическими соединениями (например, сердечным гликозидом уабаином), нарушает работу насоса, вследствие чего клетка теряет К+ и обогащается Nа+. К такому же результату приводит торможение окислительных и гликолитических процессов в клетке, обеспечивающих синтез АТФ. В эксперименте это достигается при помощи ядов, ингибирующих указанные процессы. В условиях нарушения кровоснабжения тканей, ослабления процесса тканевого дыхания происходит угнетение работы электрогенного насоса и как следствие накопление К+ в межклеточных щелях и деполяризация мембраны.
Роль АТФ в механизме активного транспорта Na+ прямо доказана в опытах на гигантских нервных волокнах кальмара. Было установлено, что путем введения внутрь волокна АТФ можно временно восстановить работу натриевого насоса, нарушенную ингибитором дыхательных ферментов цианидом.
Первоначально полагали, что натриевый насос электронейтрален, т. е. число обмениваемых ионов Na+ и К+ равно. В дальнейшем выяснилось, что на каждые три иона Na+ выводимые из клетки, в клетку поступает только два иона К'+. Это означает, что насос электрогенен: он создает на мембране разность потенциалов, суммирующуюся с потенциалом покоя.
Этот вклад натриевого насоса в нормальную величину потенциала покоя у различных клеток не одинаков: он, по-видимому, незначителен в нервных волокнах кальмара, но существен для потенциала покоя (составляет около 25% от полной величины) в гигантских нейронах моллюсков, гладких мышцах.
Таким образом, в формировании потенциала покоя натриевый насос играет двоякую роль: 1) создает и поддерживает трансмембранный градиент концентраций Na+ и К+;
2) генерирует разность потенциалов, суммирующуюся с потенциалом, создаваемым диффузией К+ по концентрационному градиенту.