
- •Министерство сельского хозяйства Российской Федерации
- •Введение.
- •Лекция 1 механика. Акустика
- •1.1. Биофизика – как наука. Практические задачи. Методы исследования
- •1.2. Механическая работа животного. Эргометрия
- •1.3. Перегрузки и невесомость
- •1.4. Вестибулярный аппарат как инерциальная система ориентации
- •1.5. Свободные и вынужденные механические колебания
- •1.6. Природа звука и его физические характеристики
- •1.7. Физика слуха
- •1.8. Ультразвук и его применение в медицинских целях
- •1.9. Инфразвук. Вибрации
- •Вопросы для самоконтроля
- •Список литературы
- •Лекция 2 течение и свойства жидкостей
- •2.1 Вязкость жидкости. Уравнение Ньютона. Закон Пуазейля
- •2.2. Движение тел в вязкой жидкости. Закон Стокса
- •2.3. Клинический метод определения вязкости жидкости
- •2.4. Турбулентное течение. Число Рейнольдса
- •2.5. Поверхностное натяжение. Смачивание и несмачивание. Капиллярные явления
- •2.6. Эмболия
- •Вопросы для самоконтроля
- •Список литературы
- •Лекция 3 термодинамика. Физические процессы в биологических мембранах
- •3.1. Основные понятия термодинамики. Первое и второе начала термодинамики
- •3.2. Энтропия. Принцип минимума производства энергии
- •3.3. Организм как открытая система
- •3.4. Некоторые физические свойства и параметры мембран
- •3.5. Перенос молекул через мембраны. Уравнение Фика
- •Вопросы для самоконтроля
- •Список литературы
- •Лекция 4 электродинамика
- •4.1. Электрическое поле и его характеристики
- •4.2. Физические основы электрокардиографии
- •4.3. Электропроводимость биологических тканей и жидкостей при постоянном токе
- •4.4. Электрический ток в газах
- •4.5. Аэроионы и их лечебно-профилактическое действие
- •4.6. Магнитное поле и его характеристики
- •4.7. Магнитные свойства тканей организма. Биомагнетизм
- •4.8. Переменный электрический ток
- •Вопросы для самоконтроля
- •Список литературы
- •Лекция 5 оптика. Тепловое излучение
- •5.1. Природа света. Принцип Гюйгенса-Френеля.
- •5.2. Интерференция
- •5.3. Дифракция
- •5.4. Поляризация
- •5.5. Исследование биологических тканей в поляризованном свете
- •5.6. Оптическая система глаза
- •5.7. Тепловое излучение тел
- •5.8. Теплоотдача организма
- •Вопросы для самоконтроля
- •Список литературы
- •Лекция 6 физика атомов и молекул. Элементы квантовой биофизики
- •6.1. Гипотеза де Бройля
- •6.2. Строение атома. Постулаты Бора
- •6.3. Энергетические уровни атомов
- •6.4. Виды излучений
- •6.5. Люминесценция
- •6.6. Фотобиологические процессы
- •Вопросы для самоконтроля
- •Список литературы
- •Лекция 7 ионизирующие излучения. Основы дозиметрии
- •7.1. Рентгеновское излучение. Тормозное рентгеновское излучение
- •7.2. Взаимодействие рентгеновского излучения с веществом
- •7.3. Радиоактивность. Закон радиоактивного распада
- •7.4. Взаимодействие ионизирующего излучения с веществом
- •7.5. Использование радионуклидов и нейтронов в медицине
- •Вопросы для самоконтроля
- •Список литературы
- •Библиографический список
- •Содержание
7.4. Взаимодействие ионизирующего излучения с веществом
Заряженные частицы и γ-фотоны, распространяясь в веществе, взаимодействуют с электронами и ядрами, в результате чего изменяется состояние как вещества, так и частиц.
Основным механизмом потерь энергии заряженной частицы (α и β) при прохождении через вещество является ионизационное торможение. При этом ее кинетическая энергия расходуется на ионизацию атомов среды.
Взаимодействие частицы с веществом количественно оценивают линейной плотностью ионизации, линейной тормозной способностью вещества и средним линейным пробегом частицы.
Под линейной плотностью ионизации i понимают отношение числа ионов одного знака dn, образованных заряженной ионизирующей частицей на элементарном пути dl, к этому пути: i = dn/dl.
Линейной тормозной способностью вещества S называют отношение энергии dE, теряемой заряженной частицей при прохождении элементарного пути dl в веществе, к длине этого пути: S = dE/dl.
Средним линейным пробегом заряженной ионизирующей частицы R является среднее значение расстояния между началом и концом пробега заряженной частицы в данном веществе.
Ионизация и возбуждение являются первичными процессами. Вторичными процессами могут быть увеличение скорости молекулярно-теплового движения частиц вещества, характеристическое рентгеновское излучение, радиолюминесценция, химические процессы.
Взаимодействие α-частиц с ядрами – значительн6о более редкий процесс, чем ионизация. При этом возможны ядерные реакции, а также рассеивание α-частиц.
β-излучение, так же как и α-излучение, вызывает ионизацию вещества. Кроме ионизации β-частицы могут вызвать и другие процессы. Так, например, при торможении электронов возникает тормозное рентгеновское излучение. β-частицы рассеиваются на электронах вещества, и их пути сильно искривляются в нем. Если электрон движется в среде со скоростью, превышающей фазовую скорость распространения света в этой среде, то возникает характерное черенковское излучение. Излучение Черенкова-Вавилова – свечение, вызываемое в прозрачной среде заряженной частицей, которая движется со скоростью, превышающей фазовую скорость распространения света в этой среде.
При попадании β+-частицы (позитрона) в вещество с большой вероятностью происходит такое взаимодействие ее с электроном, в результате которого пара электрон-позитрон превращается в два γ-фотона. Этот процесс называют аннигиляцией.
При попадании γ-излучения в вещество наряду с процессами, характерными для рентгеновского излучения, возникают и такия явления, которые неспецифичны для взаимодействия рентгеновского излучения с веществом. К этим процесса следует отнести образование пары электрон-позитрон, происходящее при энергии γ-фотона, не меньше суммарной энергии покоя электрона и позитрона, и фотоядерные реакции, которые возникают при взаимодействии γ-фотонов больших энергий с атомными ядерами. Для возникновения фотоядерной реакции необходимо, чтобы энергия γ-фотонов была не меньше энергии связи, приходящейся на нуклон.
В результате различных процессов под действием γ-излучения образуются заряженные частицы, следовательно, γ-излучение также является ионизирующим.