
- •Министерство сельского хозяйства Российской Федерации
- •Введение.
- •Лекция 1 механика. Акустика
- •1.1. Биофизика – как наука. Практические задачи. Методы исследования
- •1.2. Механическая работа животного. Эргометрия
- •1.3. Перегрузки и невесомость
- •1.4. Вестибулярный аппарат как инерциальная система ориентации
- •1.5. Свободные и вынужденные механические колебания
- •1.6. Природа звука и его физические характеристики
- •1.7. Физика слуха
- •1.8. Ультразвук и его применение в медицинских целях
- •1.9. Инфразвук. Вибрации
- •Вопросы для самоконтроля
- •Список литературы
- •Лекция 2 течение и свойства жидкостей
- •2.1 Вязкость жидкости. Уравнение Ньютона. Закон Пуазейля
- •2.2. Движение тел в вязкой жидкости. Закон Стокса
- •2.3. Клинический метод определения вязкости жидкости
- •2.4. Турбулентное течение. Число Рейнольдса
- •2.5. Поверхностное натяжение. Смачивание и несмачивание. Капиллярные явления
- •2.6. Эмболия
- •Вопросы для самоконтроля
- •Список литературы
- •Лекция 3 термодинамика. Физические процессы в биологических мембранах
- •3.1. Основные понятия термодинамики. Первое и второе начала термодинамики
- •3.2. Энтропия. Принцип минимума производства энергии
- •3.3. Организм как открытая система
- •3.4. Некоторые физические свойства и параметры мембран
- •3.5. Перенос молекул через мембраны. Уравнение Фика
- •Вопросы для самоконтроля
- •Список литературы
- •Лекция 4 электродинамика
- •4.1. Электрическое поле и его характеристики
- •4.2. Физические основы электрокардиографии
- •4.3. Электропроводимость биологических тканей и жидкостей при постоянном токе
- •4.4. Электрический ток в газах
- •4.5. Аэроионы и их лечебно-профилактическое действие
- •4.6. Магнитное поле и его характеристики
- •4.7. Магнитные свойства тканей организма. Биомагнетизм
- •4.8. Переменный электрический ток
- •Вопросы для самоконтроля
- •Список литературы
- •Лекция 5 оптика. Тепловое излучение
- •5.1. Природа света. Принцип Гюйгенса-Френеля.
- •5.2. Интерференция
- •5.3. Дифракция
- •5.4. Поляризация
- •5.5. Исследование биологических тканей в поляризованном свете
- •5.6. Оптическая система глаза
- •5.7. Тепловое излучение тел
- •5.8. Теплоотдача организма
- •Вопросы для самоконтроля
- •Список литературы
- •Лекция 6 физика атомов и молекул. Элементы квантовой биофизики
- •6.1. Гипотеза де Бройля
- •6.2. Строение атома. Постулаты Бора
- •6.3. Энергетические уровни атомов
- •6.4. Виды излучений
- •6.5. Люминесценция
- •6.6. Фотобиологические процессы
- •Вопросы для самоконтроля
- •Список литературы
- •Лекция 7 ионизирующие излучения. Основы дозиметрии
- •7.1. Рентгеновское излучение. Тормозное рентгеновское излучение
- •7.2. Взаимодействие рентгеновского излучения с веществом
- •7.3. Радиоактивность. Закон радиоактивного распада
- •7.4. Взаимодействие ионизирующего излучения с веществом
- •7.5. Использование радионуклидов и нейтронов в медицине
- •Вопросы для самоконтроля
- •Список литературы
- •Библиографический список
- •Содержание
5.3. Дифракция
Дифракция света явление непрямолинейного распространения света вблизи преграды (огибание лучом преграды), а получающаяся при этом картина называется дифракционной. Дифракция отчетливо обнаруживается, если размеры препятствий соизмеримы с длиной световой волны (порядка 1 мкм). Дифракция подтверждает волновые свойства света и объясняется на основе принципа Гюйгенса-Френеля. На преградах образуются вторичные источники когерентных световых волн, а вследствие их интерференции – максимумы и минимумы.
Свет от источника S попадает на экран А через отверстие ав в непрозрачном экране В (рис.24).
Рисунок 24.
Из-за когерентности волны 1 и 2, 3 и 4 будут интерферировать. В зависимости от разности хода лучей на экране А в точках с и d возникнут максимумы или минимумы.
Дифракция ограничивает разрешающую способность оптических приборов – способность получать раздельно изображения мелких предметов расположенных близко друг от друга.
За счет дифракции каждый мелкий предмет воспринимается как мелкий диск. Если предметы находятся близко, то их дифракционные изображения перекрываются. При перекрытии менее радиуса дифракционного изображения предметы могут видеться раздельно. Наименьшее расстояние, при котором две точки можно видеть раздельно, называется разрешаемым расстоянием.
Разрешающую способность принято оценивать величиной обратной разрешаемому расстоянию.
Для микроскопа разрешаемое расстояние определяется формулой
,
где λ – длина световой волны, n – показатель преломления среды, u – апертурный угол, и Sin(π/2) – числовая апертура.
Таким образом, разрешение микроскопа не превышает половины длины волны зеленого цвета ≈0,3 мкм, а разрешающая способность ≈ 3*106м-1=3*103мм-1.
Дифракция ограничивает полезное увеличение микроскопа теоретическим значением 2500.
5.4. Поляризация
Свет, излучаемый отдельным атомом, является электромагнитной волной, которая состоит из двух взаимноперпендикулярных составляющих – электрической (вектор напряженности Е) и магнитной (вектор напряженности Н) волн, распространяющихся в направлении перпендикулярном плоскости векторов Е и Н.
Луч
(свет), у которого электрические колебания
происходят только в одной плоскости,
называется поляризованным.
Таким образом, свет излучаемый одним
атомом является линейно поляризованным
(рис. 25а).
Рисунок 25.
Естественные источники излучают неполяризованный свет, так как он образуется совокупностью излучений всех атомов вещества (рис.25б). Иногда имеет место частично поляризованный свет (рис.25в).
Естественный свет можно поляризовать, если он проходит через анизотропное прозрачное вещество, такое, что колебания вектора напряженности электрического поля выходящего света совершались бы вдоль одного определенного направления (рис.66а).
Если за кристаллом, образующим поляризованный свет (поляризатор) поместить такой же кристалл, имеющий возможность вращения относительно луча, то интенсивность света после прохождения последнего будет изменяться по закону Малюса
,
где α – угол между направлением поляризации луча и направлением пропускания второго кристалла (анализатора).
Рисунок 26.
Поляризованный свет можно получить также при преломлении и отражении на границе изотропных сред (рис.2 6б).
Так, угол полной поляризации αр зависит от относительного показателя преломления отражающей среды (закон Брюстера)
.
Некоторые вещества поворачивают плоскость поляризации. Они называются оптически активными (сахар, никотин, винная кислота, кварц). Угол поворота Θ плоскости поляризации зависит от длины пути света в веществе и его концентрации С.
.
Отсюда .
где α – удельное вращение (градм2/кг).
Это свойство используется в поляриметрах, состоящих из поляризатора и анализатора между которыми помещается кювета с исследуемым веществом. По измерению Θ и известному значению ℓ, для данного вещества можно вычислить концентрацию раствора.