
- •Министерство сельского хозяйства Российской Федерации
- •Введение.
- •Лекция 1 механика. Акустика
- •1.1. Биофизика – как наука. Практические задачи. Методы исследования
- •1.2. Механическая работа животного. Эргометрия
- •1.3. Перегрузки и невесомость
- •1.4. Вестибулярный аппарат как инерциальная система ориентации
- •1.5. Свободные и вынужденные механические колебания
- •1.6. Природа звука и его физические характеристики
- •1.7. Физика слуха
- •1.8. Ультразвук и его применение в медицинских целях
- •1.9. Инфразвук. Вибрации
- •Вопросы для самоконтроля
- •Список литературы
- •Лекция 2 течение и свойства жидкостей
- •2.1 Вязкость жидкости. Уравнение Ньютона. Закон Пуазейля
- •2.2. Движение тел в вязкой жидкости. Закон Стокса
- •2.3. Клинический метод определения вязкости жидкости
- •2.4. Турбулентное течение. Число Рейнольдса
- •2.5. Поверхностное натяжение. Смачивание и несмачивание. Капиллярные явления
- •2.6. Эмболия
- •Вопросы для самоконтроля
- •Список литературы
- •Лекция 3 термодинамика. Физические процессы в биологических мембранах
- •3.1. Основные понятия термодинамики. Первое и второе начала термодинамики
- •3.2. Энтропия. Принцип минимума производства энергии
- •3.3. Организм как открытая система
- •3.4. Некоторые физические свойства и параметры мембран
- •3.5. Перенос молекул через мембраны. Уравнение Фика
- •Вопросы для самоконтроля
- •Список литературы
- •Лекция 4 электродинамика
- •4.1. Электрическое поле и его характеристики
- •4.2. Физические основы электрокардиографии
- •4.3. Электропроводимость биологических тканей и жидкостей при постоянном токе
- •4.4. Электрический ток в газах
- •4.5. Аэроионы и их лечебно-профилактическое действие
- •4.6. Магнитное поле и его характеристики
- •4.7. Магнитные свойства тканей организма. Биомагнетизм
- •4.8. Переменный электрический ток
- •Вопросы для самоконтроля
- •Список литературы
- •Лекция 5 оптика. Тепловое излучение
- •5.1. Природа света. Принцип Гюйгенса-Френеля.
- •5.2. Интерференция
- •5.3. Дифракция
- •5.4. Поляризация
- •5.5. Исследование биологических тканей в поляризованном свете
- •5.6. Оптическая система глаза
- •5.7. Тепловое излучение тел
- •5.8. Теплоотдача организма
- •Вопросы для самоконтроля
- •Список литературы
- •Лекция 6 физика атомов и молекул. Элементы квантовой биофизики
- •6.1. Гипотеза де Бройля
- •6.2. Строение атома. Постулаты Бора
- •6.3. Энергетические уровни атомов
- •6.4. Виды излучений
- •6.5. Люминесценция
- •6.6. Фотобиологические процессы
- •Вопросы для самоконтроля
- •Список литературы
- •Лекция 7 ионизирующие излучения. Основы дозиметрии
- •7.1. Рентгеновское излучение. Тормозное рентгеновское излучение
- •7.2. Взаимодействие рентгеновского излучения с веществом
- •7.3. Радиоактивность. Закон радиоактивного распада
- •7.4. Взаимодействие ионизирующего излучения с веществом
- •7.5. Использование радионуклидов и нейтронов в медицине
- •Вопросы для самоконтроля
- •Список литературы
- •Библиографический список
- •Содержание
6.3. Энергетические уровни атомов
Энергия электрона, находящегося на стационарной орбите, называется уровнем энергии атома (энергетическим уровнем). С увеличением квантового числа энергия атома возрастает и при n , E0.
Рисунок 29.
Уровни значений полной энергии атома водорода представлены на рис.29.
С возрастанием квантового числа увеличивается расстояние (радиус орбиты, по которой движется электрон), а полная и потенциальная энергия стремится к нулю. Кинетическая энергия также стремится к нулю и область E0 соответствует состоянию свободного электрона.
Кроме главного квантового числа n= 1,2,3… состояние атома характеризуется орбитальным ℓ=0,1,2,… n-1, определяющим форму орбиты, магнитным m1 = -1,…,-1,0,+1,…,+1 (ориентация орбиты в пространстве), магнитным спиновым ms= -1/2; +1/2 (собственное вращение электрона в атоме). То есть для одинакового главного квантового числа существует множество состояний электрона (энергетических состояний), распределение, которых удовлетворяет двум принципам:
В атоме состояние всех электронов различны, то есть не может быть электронов, имеющих одинаковую комбинацию квантовых чисел (принцип исключения) - установлен в 1925 году швейцарским физиком В.Паули].
Распределение электронов в атоме должно соответствовать минимуму энергии атома (принцип минимума энергии).
Общее число электронов в атоме определяется зарядом его ядра, выраженным через элементарный заряд. У атома с минимальной энергией (невозбужденного) электроны заполняют ближайшие к ядру слои, имеющим n оболочек (от 0 до n-1) с определенным количеством электронов в каждой из них.
Построение этой теории стало возможным благодаря тщательным исследованиям спектров излучения различных газов (спектров излучения атомов), в результате которых были обнаружены спектральные линии, расположенные по определенной закономерности. В атоме водорода, например, эта закономерность определена формулой Бальмера-Ридберга
,
где R = me2/8ε2h2 = 3,28985·1015 с-1 ≈ 3,29·1015 c-1 – постоянная Ридберга, n и n0 – квантовые числа, соответствующие начальному (до излучения) и конечному (после излучения) энергетическим состояниям атома.
При переходе электрона с одной стационарной орбиты на другую (ближнюю к ядру) атом излучает квант энергии, равный разности энергий атома до и после излучения
.
В спектре можно выделить группы линий, которые получили название спектральных серий. Каждая серия соответствует переходам возбужденного атома на один и тот же энергетический уровень (рис.30)
Серия Лаймана расположена в ультрафиолетовой части спектра. Она образуется в результате перехода электронов с верхних энергетических уровней на основной (n=1). Интенсивность возрастает с уменьшением длины волны.
Серия Бальмера находится в видимой и близкой к ультрафиолетовой областях спектра. Она обнаружена в 1885 году швейцарским физиком Бальмером и является, по сути, началом построения квантовой теории атома.
Серия Пашена находится в инфракрасной области спектра. Она возникает при переходе электронов на третий энергетический уровень.
Рисунок 30.
Существуют и другие серии, однако спектр ограничен, так как энергетические уровни атома по мере увеличения главного квантового числа сближаются и вероятность перехода между ними мала, поэтому они практически не наблюдаются.