Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
К ГОСАМ / Лекция4_05.doc
Скачиваний:
25
Добавлен:
24.03.2015
Размер:
14.51 Mб
Скачать

Классификация снимков.

По спектральному диапазону снимки де­лятся на три основные группы [9]:

  • в видимом и ближнем инфракрасном (световом) диапазоне;

  • в тепловом инфракрасном диапазоне;

  • снимки в радиодиапазоне.

По технологии получения изображения, способам получения сним­ков и передачи на Землю снимки в видимом и ближнем инфра­красном (световом) диапазоне подразделяют на:

  • фотографические;

  • телевизионные и сканерные;

  • многоэлементные ПЗС-снимки на основе приборов с заря­довой связью;

  • фототелевизионные.

Снимки в тепловом инфракрасном диапазоне представляют собой тепловые инфракрасные радиометрические снимки. Снимки в радиодиапазоне делятся в зависимости от использования актив­ного или пассивного принципа съемки на микроволновые радио­метрические, получаемые при пассивной регистрации излучения, и радиолокационные, получаемые при активной локации.

По масштабу космические снимки делятся на три группы:

- мелкомасштабные (1:10000000—1:100000000);

- среднемасштабные (1:1 000000— 1:10000000);

- крупномасштабные (крупнее 1:1 000000).

По обзорности (площадному охвату территории одним снимком) снимки подразделяются на:

  • глобальные (охватывающие всю планету, точнее, освещенную часть одного полушария);

  • региональные, на которых изображаются части материков или крупные регионы;

  • локальные, на которых изображаются части регионов.

По разрешению (минимальной линейной величине на местности изображающихся объектов) снимки различаются на снимки:

  • очень низкого разрешения, измеряющееся десятками кило­метров;

  • низкого разрешения, измеряющегося километрами;

  • среднего разрешения, измеряющегося сотнями метров;

  • снимки высокого разрешения, измеряющегося десятками мет­ров;

  • сверхвысокого разрешения, на которых изображаются объек­ты размером менее 10м.

По детальности изображения, определяемой размерами элемен­тов изображения и их количеством на единицу площади, выделяют снимки малой, средней, большой и очень большой детальности.

По повторяемости съемки снимки подразделяются на снятые через несколько минут, часов, суток или лет. Бывают и разовые съемки [9].

Какая техника используется сегодня для получения данных зондирования Земли.

Наибольшее значение имеют два продукта сенсоров: аналоговые фотографические системы и цифровые съемочные системы. Аэрофотоаппараты и их космические аналоги - это весьма сложные и точные устройства, заполненные разной электроникой, установленные на гиростабилизированной платформе. Отснятый в воздухе или в космосе негатив после возвращения на Землю проявляется и печатается для использования как обычный фотоснимок. Предпочтительнее иметь дело не с отпечатком на бумаге, а с исходным негативом на пленке, на нем лучше различимы многие детали изображения. Это происходит в силу того, что при печати на фотобумагу уменьшается радиометрическое (яркостное) разрешение снимка - пропадают детали в самых светлых, или в самых темных местах изображения или теряется контраст всего изображения - оно "сереет". Поэтому когда для ввода в компьютер фотоизображение сканируют, то всегда стараются сканировать исходные негативы на специальном сканере, который работает на просвет, а не на отражение.

По принципиальной оптической схеме аэро- и космофотоаппараты могут быть вполне подобны обычным - тогда это камеры для по кадровой съемки (рамочная камера), только в этих аппаратах используется специальная пленка большой ширины (18 см, 24 см, и др.).

Получаемые такой камерой снимки имеют центральную проекцию, и этим резко отличны от большинства карт. В силу свойств центральной проекции такой снимок не имеет постоянного масштаба - масштаб на нем в разных участках и вдоль разных направлений различен, в силу этого форма и размеры объектов на нем передаются с искажениями, и точные измерения по снимку нельзя делать без специальных приемов.

Как сделать возможными такие измерения, как сделать снимок геометрически точным измерительным инструментом, этим занимается специальная прикладная дисциплина - фотограмметрия. Фотограмметрические методики позволяют так трансформировать снимок, чтобы он стал как бы планом или картой. Такое трансформирование раньше выполняли с помощью очень громоздкой и дорогой оптико-механической аппаратуры, сегодня для этого существуют специальные компьютерные программы.

Есть еще специфический вид геометрических искажений на снимке, связанный с рельефом местности. Если местность имеет не совсем плоский рельеф, то объекты на снимке смещаются относительно своего "правильного" положения в зависимости от высоты местности, на которой они находятся. Это легко представить себе, вообразив, как будет выглядеть на снимке изображение столба, расположенного в стороне от центра снимка. Мы будем видеть и его верх и низ несколько разнесенными - верх будет чуть дальше от центра снимка, чем низ. А ведь в плане вертикальный столб должен бы видеться как точка.

Последний вид искажений также может быть устранен практически полностью, но для этого требуется знание рельефа местности, для цифровых методов - цифровой модели рельефа. Этот процесс устранения искажений за счет рельефа называется ортотрансформированием. Этот процесс тоже может быть проведен на компьютере, и цифровые ортофото сегодня находят самое широкое применение в ГИС.

Есть фотоаппараты с более сложной геометрией снимка - щелевые и панорамные камеры с движущимся при экспонировании объективом. В результате работы этих аппаратов образуется длинная полоса изображения, а не отдельные кадры. Геометрические свойства таких снимков совершенно отличаются от "по кадровых".

Рис. 5 Схемы построения изображений различными фотоаппаратами:

а – кадровым; б – щелевым; в – панорамным [10]

Соседние файлы в папке К ГОСАМ