
- •Практическое руководство по химии почв
- •Введение
- •Раздел I. Валовой анализ
- •1.1. Способы разложения почв
- •1.1.1. Разложение почв кислотами.
- •1.1.2. Разложение почв сплавлением.
- •1.1.3. Разложение почвы спеканием.
- •1.2. Определение гигроскопической влажности
- •1.3. Определение потери при прокаливании
- •1.4. Спекание почвы с содой
- •1.5. Анализ элементного состава почв
- •1.5.1. Определение кремния желатиновым методом
- •Пример расчета. Для спекания взято 1,0224 г прокаленной почвы. Прокаленный осадок SiO2 весит 0,8014 г. Содержание SiO2 равно:
- •1.5.2. Определение полуторных оксидов гравиметрическим методом
- •1.5.3. Определение железа фотометрическим методом
- •1.5.4. Определение алюминия фотометрическим методом
- •1.5.5.Вычисленное содержание алюминия по разности
- •1.5.6. Определение кальция и магния комплексонометрическим методом
- •1.5.6.1. Определение кальция
- •1.5.6.2. Определение суммы кальция и магния
- •1.5.7. Пероксидный метод определения титана
- •1.5.8. Определение фосфора фотометрическим методом
- •1.6. Способы выражения результатов валового анализа
- •1.7. Пересчеты данных валового анализа
- •1.8. Использование данных валового анализа
- •1.8.1. Использование элементного состава для суждения о генезисе почв.
- •1.8.2. Использование элементного состава для оценки потенциального плодородия почвы.
- •1.8.3. Использование данных элементного состава для расчета молекулярных отношений
- •1.8.4. Использование данных элементного состава для расчета запасов химических элементов
- •Пример расчета. Найти запас SiO2 в т/га если его содержание равно 80,63 %, плотность сложения почвы 1,18 г/см3, мощность слоя 9 см.
- •1.8.5. Использование данных элементного состава при изучении биологического круговорота веществ
- •1.8.6. Использование данных элементного состава для
- •1.8.6.1. Метод прямого сравнения
- •1.8.6.2. Методы стабильного компонента
- •1.8.6.2.1. Метод молекулярных отношений
- •1.8.6.2.2. Метод элювиально-аккумулятивных (еа) коэффициентов
- •1.8.6.2.3. Метод баланса веществ
- •1.8.7. Использование данных элементного состава для диагностики минералов илистой фракции.
- •Контрольные вопросы
- •Литература
- •Раздел II. Ионно-солевой комплекс почв
- •2.1. Метод водной вытяжки
- •2.1.1. Влияние солей на сельскохозяйственные культуры
- •2.1.2. Достоинства и недостатки водной вытяжки как метода изучения засоленных почв
- •2.1.3 Анализ водной вытяжки
- •2.1.3.1. Определение величины рН водной вытяжки
- •2.1.3.2. Определение величины сухого остатка
- •2.1.3.3. Определение величины прокаленного остатка
- •2.1.3.4. Определение щелочности от растворимых карбонатов
- •2.1.3.5. Определение общей щелочности
- •2.1.3.6. Определение хлорид-ионов
- •2.1.3.7. Определение сульфат-ионов
- •2.1.3.8. Определение ионов кальция и магния комплексонометрическим методом
- •2.1.3.8.1. Определение кальция
- •2.1.3.8.2. Определение суммы кальция и магния
- •2.1.3.9. Определение натрия и калия
- •2.1.3.9.1. Определение натрия и калия методом фотометрии пламени
- •2.1.3.9.2. Определение содержания натрия и калия по разности
- •Форма 4. Данные анализа водной вытяжки
- •2.1.4. Интерпретация данных водной вытяжки
- •2.1.4.1. Характеристика солевого режима почв по величине сухого остатка
- •2.1.4.2. Оценка химизма (типа) засоления почв.
- •2.1.4.2.1. Общие принципы оценки химизма засоления почв
- •2.1.4.2.2. Оценка степени засоления почв по содержанию токсичных ионов
- •2.1.4.2.3. Оценка степени засоления почв по «суммарному эффекту» токсичных ионов
- •2.1.5. Расчет промывной нормы
- •2.2. Катионообменная способность почв
- •2.2.1. Общие представления о катионообменной
- •2.2.2. Методы определения катионообменной способности почв
- •2.2.2.1. Оценка эффективной емкости катионного обмена
- •2.2.2.2. Определение стандартной емкости катионного обмена по Бобко-Аскинази в модификации цинао
- •2.2.2.3. Определение суммы обменных оснований методом Каппена-Гильковица
- •2.2.2.4. Определение гидролитической кислотности
- •2.2.2.5. Определение обменных катионов по методу Пфеффера в модификации в.А. Молодцова и и.В. Игнатовой
- •2.2.2.5.1. Определение кальция комплексонометрическим методом
- •2.2.2.5.2. Определение суммы кальция и магния комплексонометрическим методом
- •2.2.2.5.3. Определение натрия и калия методом фотометрии пламени
- •2.2.3. Использование результатов определения катионообменной способности почв
- •2.2.3.1. Вычисление степени насыщенности почв основаниями
- •2.2.3.2. Расчет дозы извести
- •2.2.3.3. Вычисление степени солонцеватости почв
- •2.2.3.4. Расчет дозы гипса
- •Контрольные вопросы
- •Литература
- •Раздел III. Органическое вещество почвы
- •3.1. Подготовка почвы для определения содержания и состава гумуса
- •3.2. Методы определения содержания общего гумуса почвы
- •3.2.1. Прямые методы определения содержания углерода органических соединений (гумуса) почвы.
- •3.2.2. Косвенные методы определения содержания углерода органических соединений (гумуса) почвы
- •3.2.2.1. Определение гумуса методом и.В.Тюрина в модификации в.Н.Симакова
- •3.2.2.2. Другие модификации метода и.В. Тюрина.
- •3.2.2.2.1. Спектрофотометрический метод определения содержания гумуса (д.С. Орлов, н.М. Гриндель)
- •3.2.2.2.2. Определение содержания органического углерода почвы методом и.В.Тюрина в модификации б.А.Никитина.
- •3.3. Методы определения общего содержания азота почвы.
- •3.3.1. Определение общего содержания азота методом Кьельдаля.
- •3.3.2. Определение общего содержания азота микрохромовым методом и.В. Тюрина.
- •3.4. Использование данных по содержанию общего гумуса и азота
- •3.4.1. Расчет отношения c:n
- •3.4.2. Вычисление запасов гумуса, углерода и азота.
- •3.5. Методы определение группового и фракционного состава гумуса.
- •3.5.1. Определение группового и фракционного состава гумуса по методу и.В. Тюрина в модификации в.В.Пономаревой и т.А.Плотниковой
- •3.5.2. Определение группового и фракционного состава гумуса по модифицированной схеме в.В.Пономаревой и т.А. Плотниковой (т.А. Плотникова, н.Е. Орлова, 1984).
- •Ход анализа
- •3.5.3. Ускоренный пирофосфатный метод определения состава гумуса по м.М. Кононовой и н.П. Бельчиковой
- •3.6. Методы изучения некоторых свойств гумусовых кислот при анализе фракционно-группового состава гумуса
- •3.6.1. Определение порога коагуляции гуминовых кислот.
- •3.6.2. Оптические свойства гумусовых веществ.
- •3.6.2.1. Электронные спектры поглощения гумусовых веществ
- •3.6.2.2. Определение коэффициента цветности q4/6
- •3.6.3. Гель-хроматография гумусовых веществ
- •3.7. Показатели гумусового состояния почв
- •Продолжение таблицы 31
- •3.8. Методы определения содержания и состава органического вещества в болотных торфяных почвах.
- •3.8.1. Определение потери при прокаливании и зольности торфа.
- •3.8.2. Одновременное определение общего содержания углерода и азота в торфяных почвах методом Анстета в модификации в.В. Пономаревой и т. А. Николаевой
- •Вычисление результатов анализа
- •Для анализа используют следующие реактивы:
- •3.8.3. Определение общего содержания азота в растительных материалах (торфах, лесных подстилках и пр.) методом к.Е. Гинзбурга и г.М. Щегловой
- •3.8.4. Определение содержания органического азота в вытяжках из торфов микрохромовым методом и.В. Тюрина
- •3.8.5. Определение состава органического вещества торфяно-болотных почв по методу в.В. Пономаревой и т.А. Николаевой.
- •Контрольные вопросы
- •Литература
- •Раздел I. Валовой анализ ……………………………………
- •Раздел II. Ионно-солевой комплекс почв ……………………
- •Раздел III. Органическое вещество почв
1.1.3. Разложение почвы спеканием.
Спекание позволяет проводить разложение почвы при температуре ниже точки плавления. Процессы, происходящие при спекании, относятся к твердофазным процессам, т.е. к таким, в которых как исходные, так и конечные продукты твердые. Эти процессы в большинстве случаев очень сложные и до конца не достаточно изучены.
В процессе спекания происходит разрыхление кристаллической решетки минералов, и диффузия щелочных металлов в глубь решетки кристалла при этом диффузия ионов натрия идет быстрее, чем ионов калия.
При спекании особое внимание обращают на тщательное растирание почвенного образца и равномерное перемешивание его с плавнем, для того чтобы обеспечить их тесный контакт.
При разложении почвы спеканием в качестве плавня используют карбонат натрия (Na2CO3). Спекание проводят при температуре 850-9000С в фарфоровых тиглях в присутствии нитрата калия служащего окислителем.
Для определения валового содержания натрия и калия проводят спекание почвы с плавнем, состоящим из карбоната кальция и хлорида аммония при температуре 750-8000С. В этом случае для калинатриевого полевого шпата имеет место следующая реакция:
2KNaAlSi3O8 + 6CaCO3 + 2NH4Cl = 6CaSiO3 + Al2O3 + 6CO2↑ + 2NH3↑ + H2O + KCl + NaCl
При выщелачивании спека водой в раствор переходят хлориды щелочных металлов, большое количество хлорида кальция и гидроксида кальция. Остальные компоненты спека в воде не растворяются. Кальций осаждают в виде оксалата или карбоната кальция, а натрий и калий остаются в растворе.
Для проведения валового анализа берут три навески почвы. Одна навеска служит для определения содержания гигроскопической влаги, вторая навеска – для определения потери при прокаливании, третью навеску используют для спекания почвы. Ниже приводится сокращенный экспресс-метод валового анализа по Ю.И.Добрицкой (1973) с дополнениями по Е.В.Аринушкиной (1970) и Л.А,Воробьевой (2006).
1.2. Определение гигроскопической влажности
Величина гигроскопической влаги находится в тесной зависимости от относительной влажности воздуха, с которым соприкасается почва. Чем выше насыщенность воздуха водяными парами, тем выше и гигроскопическая влажность почвы. Поэтому одни и те же образцы почвы, высушенные в разных условиях, будут иметь различную гигроскопическую влажность и, следовательно, при взятии одинаковой навески содержат разное количество почвы. Во избежание этого аналитические расчеты производят на абсолютно сухую массу почвы.
Ход анализа. Стеклянный стаканчик с притертой крышкой (бюкс) просушивают до постоянной массы в сушильном шкафу при температуре 100-105оС, охлаждают в эксикаторе с СаCl2 на дне и взвешивают на аналитических весах. В этом стаканчике отвешивают на аналитических весах около 5 г воздушно-сухой почвы, просеянной через сито с отверстиями диаметром 1 мм. Почву в стаканчике (крышку открыть) сушат в сушильном шкафу 5 ч, после чего стаканчик закрывают крышкой, охлаждают в эксикаторе с СаCl2 на дне и взвешивают. Затем просушивают снова в течение 2 ч. Если масса стаканчика с почвой после второй сушки осталась постоянной, то просушивание заканчивают. Допустимое расхождение в массе не должно превышать 0,003 г. Результаты записывают в форму 1.
Форма 1.
Почва, генетический горизонт, глубина образца, см |
Номер бюкса |
Масса пустого бюкса, г |
Масса бюкса с воздушно-сухой почвой, г |
Масса бюкса с сухой почвой, г |
Масса сухой почвы (m), г |
Масса испарившейся воды (а), г |
W, % |
|
|
|
|
|
|
|
|
Гигроскопическую влажность W (%) вычисляют по формуле:
W
=
,
где а – масса испарившейся воды, г; m – масса сухой почвы, г.
Коэффициент пересчета результатов анализа воздушно-сухой почвы на сухую вычисляют по формуле:
=
Пример расчета. После просушивания почвенного образца получены следующие данные (табл. 2).
Таблица 2. Результаты определения гигроскопической влажности
Почва, генетический горизонт, глубина образца, см |
Номер бюкса |
Масса пустого бюкса, г |
Масса бюкса с воздушно-сухой почвой, г |
Масса бюкса с сухой почвой, г |
Масса сухой почвы (m), г |
Масса испарившейся воды (а), г |
W, % |
Серая лесная, Апах 0-20 |
15 |
18,0368 |
23,0121 |
22,7671 |
0,2450 |
4,7303 |
5,18 |
Величина гигроскопической влажности равна:
W
=
Находим коэффициент пересчета на сухую почву: