
- •ОГЛАВЛЕНИЕ
- •1. Способы получения
- •1.1. Способы получения алкилгалогенидов
- •а) галогенирование алканов
- •б) аллильное хлорирование алкенов
- •г) гидрогалогенирование алкенов
- •д) гидрогалогенирование сопряженных диенов
- •е) замещение гидроксильной группы в спиртах на галоген
- •1.2. Способы получения винил- и арилгалогенидов
- •1.3. Способы получения дигалогенпроизводных
- •2. Химические свойства
- •2.1. Реакции нуклеофильного замещения (SN) в алкилгалогенидах
- •А) Механизм мономолекулярного нуклеофильного замещения (SN1)
- •Б) Механизм бимолекулярного нуклеофильного замещения (SN2)
- •2.2. Особенности нуклеофильного замещения галогена в арилгалогенидах
- •А) Нуклеофильное замещение в неактивированных арилгалогенидах
- •Б) Нуклеофильное замещение в активированных арилгалогенидах
- •2.3. Реакция дегидрогалогенирования
- •2.4. Восстановление галогенпроизводных
- •2.5. Реакции галогенпроизводных с металлами
- •3. Задачи и упражнения
- •СПИРТЫ
- •1. Способы получения
- •1.1. Гидратация алкенов
- •1.2. Гидролиз галогенпроизводных
- •1.3. Восстановление карбонильных соединений
- •1.4. Получение спиртов реакцией Гриньяра
- •1.5. Получение диолов и триолов
- •2. Химические свойства
- •2.1. Кислотно-основные свойства
- •2.2. Реакции спиртов с разрывом связи О-Н
- •2.2.1. Алкилирование спиртов
- •2.2.2. Ацилирование спиртов
- •2.3. Реакции спиртов с разрывом связи С-О
- •2.3.1. Замещение гидроксильной группы на галоген
- •2.3.2. Образование простых эфиров (межмолекулярная дегидратация)
- •2.3.3. Внутримолекулярная дегидратация спиртов до алкенов
- •2.4. Окисление и дегидрирование спиртов
- •3. Задачи и упражнения
- •ФЕНОЛЫ
- •1. Способы получения
- •1.1. Щелочной гидролиз арилгалогенидов
- •1.2. Щелочное плавление солей ароматических сульфокислот
- •1.3. «Кумольный» метод получения фенола
- •2. Химические свойства
- •2.1. Кислотно-основные свойства фенолов
- •2.2. Фенолы как нуклеофилы
- •2.2.1. Алкилирование и ацилирование фенолов по атому кислорода
- •2.2.2. Реакции электрофильного замещения
- •3. Задачи и упражнения
- •АЛЬДЕГИДЫ И КЕТОНЫ
- •1. Способы получения
- •1.1. Окисление алкенов
- •а) озонолиз алкенов
- •б) окисление алкенов в присутствии хлорида палладия
- •1.2. Гидратация алкинов
- •1.3. Получение ароматических альдегидов и кетонов ацилированием аренов
- •1.4. Гидролиз геминальных дигалогенидов
- •1.5. Окисление и дегидрирование спиртов
- •1.6. Получение альдегидов и кетонов из карбоновых кислот и их производных
- •а) восстановление ацилгалогенидов до альдегидов (реакция Розенмунда)
- •б) пиролиз кальциевых солей карбоновых кислот
- •в) синтез кетонов реакцией Гриньяра из нитрилов карбоновых кислот
- •2. Химические свойства
- •2.1. Кислотно-основные свойства и кето-енольная таутомерия
- •2.2. Реакции нуклеофильного присоединения
- •а) Реакции с О-нуклеофилами
- •б) Реакции с S-нуклеофилами
- •в) Реакции с N-нуклеофилами
- •г) Реакции с С-нуклеофилами
- •2.3. Реакции енолизующихся альдегидов и кетонов с галогенами
- •2.4. Окисление и восстановление альдегидов и кетонов
- •2.4.1. Окисление альдегидов и кетонов
- •2.4.2. Восстановление альдегидов и кетонов
- •2.4.3. Реакция Канниццаро
- •3. Задачи и упражнения

пара-крезол, фенол и пара-нитрофенол кислотные свойства заметно увеличиваются, т.к. устойчивость соответствующих сопряженных оснований возрастает: метильная группа как донор (+I-эффект) не уменьшает отрицательный заряд на кислороде сопряженного пара- крезолу основания, а нитрогруппа – как акцептор (-I, -M) уменьшает отрицательный заряд на атоме кислорода пара-нитрофеноксид- аниона.
OH |
OH |
OH |
< |
|
< |
CH3 |
|
NO2 |
2,4,6-Тринитрофенол (пикриновая кислота), в которой присутствуют три сильных электроноакцепторных нитрогруппы, является по сравнению с фенолом уже очень сильной ОН-кислотой (рКа ~1).
Оснóвные свойства фенолов выражены значительно слабее, чем основность спиртов, поскольку электронная плотность на атоме кислорода уменьшена за счет сопряжения с бензольным кольцом.
2.2.Фенолы как нуклеофилы
Вмолекуле фенола присутствуют два нуклеофильных центра: атом кислорода гидроксильной группы, способный проявить свой-
ства донора электронов, поскольку имеет неподеленные пары электронов, и ароматическое кольцо, по которому могут протекать реакции электрофильного замещения.
2.2.1. Алкилирование и ацилирование фенолов по атому кислорода
Как О-нуклеофилы фенолы, подобно спиртам, могут вступать в реакции с такими электрофильными реагентами, как алкилгалогениды (алкилирующие агенты) и производные карбоновых кислот – ацилгалогениды и ангидриды карбоновых кислот (ацилирующие агенты).
Алкилирование фенолов до простых эфиров чаще всего осуществляют по методу Вильямсона, т.е. в реакцию с алкилгалогенидом вводят не сам фенол, а фенолят, О-нуклеофильные свойства которого благодаря отрицательному заряду на атоме кислорода выше, чем у фенола. Так, анизол (метилфениловый эфир) может
42
http://mitht.ru/e-library

быть получен реакцией фенолята натрия с метилйодидом или взаимодействием фенола с метилйодидом в щелочной среде.
O Na |
CH3I |
OCH3 CH3I |
OH |
|
|||
|
_ NaI |
NaOH |
|
метилфениловый эфир (анизол)
Ацилирование фенолов до сложных эфиров происходит при действии на них галогеноангидридов карбоновых кислот или ангидридов карбоновых кислот. В первом случае реакция чаще всего катализируется основаниями, а во втором случае – кислотами. Например, фенилацетат можно получить взаимодействием фенола с ацетилхлоридом в присутствии едкого натра (или другого основания) или реакцией фенола с уксусным ангидридом в присутствии серной кислоты.
OH CH COCl |
OCCH |
CH3COCCH3 |
OH |
|
O O |
||||
3 |
3 |
|||
NaOH |
O |
H2SO4 |
|
фениловый эфир уксусной кислоты (фенилацетат)
В отличие от спиртов фенолы не ацилируются карбоновыми кислотами, т.е. в реакцию этерификации фенолы не вступают.
Это обусловлено более низкой нуклеофильностью фенолов по сравнению со спиртами.
2.2.2. Реакции электрофильного замещения
Как ароматические соединения, фенолы вступают в реакции электрофильного замещения в бензольное кольцо. Гидроксильная группа является одним из самых сильных активирующих заместителей (+М-эффект значительно больше –I-эффекта), поэтому реакционная способность фенолов в этих реакциях очень высока. Замещение происходит в пара- и орто-положения, т.е. гидроксильная
43
http://mitht.ru/e-library

группа, как и все активирующие заместители, является ориентантом первого рода.
Высокая реакционная способность фенолов в реакциях ароматического электрофильного замещения позволяет осуществлять для них известные реакции в значительно более мягких условиях, чем для бензола. Так, бензол не обесцвечивает бромную воду, поскольку для его бромирования необходим катализатор, например, трибромид алюминия. Если же бромную воду добавить к фенолу, наступает почти мгновенное обесцвечивание, потому что фенол реагирует с бромом, причем так активно, что бромирование не ограничивается образованием продукта монозамещения, а идет дальше во все «активные» положения, и образуется 2,4,6- трибромфенол, который при дальнейшем взаимодействии с бромом может превратиться в 2,4,4,6-тетрабром-2,5-циклогексадиенон.
OH |
OH |
|
|
O |
|
Br |
Br |
Br |
Br |
3Br2 |
|
Br2 |
|
|
H O |
|
OHO |
OH |
|
2 |
OH |
|
2 |
BrBr |
|
Br |
|
Br |
|
|
|
|
|
|
|
Br2 |
|
|
|
ВзаимодействиемCClфенола4 с бромом в неполярном растворителе, например, в тетрахлорметане, можно осуществить монобромирование, причем в основном образуетсяBr пара-бромфенол.
Нитрование фенола разбавленной азотной кислотой при комнатной температуре приводит к смеси продуктов монозамещения – орто- и пара-нитрофенолов.
ΟΗ |
ΗΝΟ3 |
ΟΗ |
ΟΗ |
|
|
+ |
|
|
Η2Ο |
|
|
|
ΝΟ2 |
ΝΟ2 |
|
|
|
44
http://mitht.ru/e-library

Сульфирование фенола концентрированной серной кислотой при 100О С происходит с образованием главным образом пара- фенолсульфокислоты.
OH H2SO4 |
OH |
HO3S
Ацилирование фенолов по атому углерода ароматического кольца осуществляется, как и для других ароматических соединений, по Фриделю-Крафтсу. Например, взаимодействие фенола с ацетилхлоридом (хлорангидридом уксусной кислоты) в присутствии хлорида алюминия приводит к продукту замещения на ацетильную группу в пара-положение:
OH |
OH |
|
O |
|
CH3CCl |
|
AlCl3 |
|
O C CH3 |
Кроме обычных для всех ароматических соединений реакций электрофильного замещения, фенолы вступают также в некоторые другие реакции SE, характерные только для очень активированных производных бензола. Рассмотрим только два примера таких реакций.
Взаимодействие фенолов с альдегидами и кетонами проис-
ходит в кислой среде с образованием продукта электрофильного замещения, причем электрофил генерируется из потенциально электрофильного карбонильного соединения в результате протонирования.
Так, например, при взаимодействии фенола с формальдегидом в качестве первичного продукта замещения образуются орто- и пара-гидроксибензиловые спирты:
OH |
OH |
OH |
|
CH2=O |
CH2OH |
|
+ |
|
|
H |
|
|
|
CH2OH
45
http://mitht.ru/e-library

Электрофильная частица в этой реакции образуется в результате следующего кислотно-основного взаимодействия:
CH2=O |
H |
|
CH2 |
OH |
Далее реакция протекает по обычному механизму электрофильного замещения через π- и σ-комплексы. На этом, однако, реакция не заканчивается. Как орто-, так и пара-гидроксибензиловые спирты в кислой среде также могут давать электрофильные частицы – соответствующие бензильные катионы, например:
OH |
OH |
H |
OH |
CH2OH H |
|
|
|
|
CH2OH |
CH2 |
|
|
|
|
_H2O |
С этими катионами другие молекулы фенола реагируют опять по механизму электрофильного замещения (алкилирования) в орто- или пара-положения с образованием следующих дигидроксидифенилметанов.
ΟΗ ΟΗ OH
CΗ2
CH2
OH
HOCH2
OH
Образовавшиеся дигидроксидифенилметаны могут реагировать далее с формальдегидом и фенолом с образованием линейных и двухмерных полимеров. Эти реакции лежат в основе производства фенолформальдегидных полимерных материалов.
По аналогичному механизму происходит реакция в кислой среде между фенолом и ацетоном в соотношении 2:1 с образованием так называемого бисфенола А – промежуточного продукта в производстве эпоксидных смол.
46
http://mitht.ru/e-library