Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Lecture6.docx
Скачиваний:
12
Добавлен:
23.03.2015
Размер:
2.27 Mб
Скачать

6.2 Метод допускаемых напряжений.

Этот метод остается пока основным при расчете механических узлов и деталей машиностроительных конструкций. Основой метода допускаемых напряжений является предположение, что критерием надежности конструкции будет выполнение следующего условия прочности

,

(6.4)

где -наибольшее рабочее напряжение, возникающее в одной из точек опасного сечения и определяемое расчетом; -допускаемое (предельное) для данного материала напряжение, получаемое на основании экспериментальных исследований. Допускаемое напряжение определяется по формуле

,

(6.5)

где -опасное напряжение (предел текучести, временное сопротивление (предел прочности)); n-коэффициент запаса прочности.

Значения допускаемых напряжений или коэффициентов запаса прочности устанавливаются техническими условиями или нормами проектирования (для строительных сталей n=1,4…1,6; для хрупких материалов n=2,5…3,5; для древесины n=3,5…6)

Условие прочности для центрально растянутого (сжатого) элемента будет иметь вид (материал пластичный, материал хрупкий):

,

,

,

(6.6)

где ,- допускаемые напряжения при растяжении и сжатии.

6.3 Метод разрушающих нагрузок

Для конструкции, изготовленной из материала с достаточно протяженной площадкой текучести, за разрушающую принимается нагрузка, при которой в ее элементах возникают значительные пластические деформации. При этом конструкция становится не способной воспринимать дальнейшее увеличение нагрузки.

При определении разрушающей нагрузки для конструкции из пластичного материала принимается схематизированная диаграмма напряжений - диаграмма Прандтля (рис.6).

Рис. 6. Диаграмма Прандтля

Схематизация диаграммы заключается в предположении, что материал работает в упругой стадии вплоть до предела текучести, а затем материал обладает безграничной площадкой текучести. Материал, работающий по такой модели, называется упругопластическим.

Для конструкции, изготовленной из хрупкого материала, за разрушающую принимается нагрузка, при которой хотя бы в одном из ее элементов возникают напряжения равные пределу прочности.

Определив величину разрушающей (предельной) нагрузки можно установить грузоподъемность стержня или стержневой системы по формуле

,

(6.7)

где n- коэффициент запаса прочности, принимаемый таким же, как и в методе допускаемых напряжений.

Критерии (гипотезы) прочности и пластичности.

При оценке несущей способности конструкций и сооружений следует исходить из того, что в одних случаях наступление предельного состояния отождествляется с появлением пластических деформаций, в других- с разрушением конструкций. Если напряженное состояние в элементах сооружения является одноосным, то определение момента появления деформаций текучести или разрушения осуществляется путем сопоставления напряжений с пределом текучести или пределом прочности. Ситуация существенно усложняется в случае плоского или объемного напряженного состояния (ПНС, ОНС).

Число опытов с образцами на ПНС или ОНС очень велико, так как для каждой новой комбинации нормальных и касательных напряжений необходимо проводить новую серию экспериментов с доведением образцов до предельного состояния (рис. 6.1- рис. 6.6).

В связи с этим предпочтение отдается другому пути решения поставленной задачи, заключающемуся в установлении меры напряженного состояния, при достижении которой происходит переход от упругого состояния к предельному.

Такая мера устанавливается с помощью критериев (гипотез) пластичности (текучести) или прочности (разрушения). В качестве таких критериев были предложены различные факторы (максимальные нормальные напряжения, максимальные относительные деформации, максимальные касательные напряжения, удельная энергия изменения формы тела и др.)

Каждый из этих критериев лишь косвенно отражает сложный, до конца не изученный процесс наступления предельного состояния в материале и оказывается применимым лишь в определенных условиях. Появление пластических или остаточных деформаций, как правило, далеко не означает разрушение материала, поэтому критерии прочности и пластичности отождествлять не следует.

Проведение опытов на плоское напряженное состояние

Рис. 6.1 Опыты на плоское напряженное состояние (ПНС)

Рис. 6.2 Предельное состояние пластины

Проведение опытов на пространственное напряженное состояние

Рис. 6.3 Испытательная машина на (ОНС)

Рис. 6.4 испытательная машина на (ОНС) (вид сверху)

Рис. 6.5 Универсальная испытательная машина

Рис. 6.6 Изгиб балки (ПНС)

Допустим, что напряженное состояние в точке тела, отвечающее заданной нагрузке известно. Путем её увеличения напряжения в точке увеличиваются пропорционально и в конце концов либо наступает разрушение материала, либо появляются пластические деформации.

Основной задачей теории прочности является разработка критериев прочности и пластичности материала для сложного (плоского и объемного) напряженного состояния (СНС).

Главное допущение теории прочности: считается, что причина наступления предельного состояния (разрушение или течение) в простом и сложном напряженных состояниях одинаковая.

Любое СНС будем характеризовать главными напряжениями .

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]