
- •8. Помилки статистичного спостереження та способи їх виправлення.
- •9. Суть, організація і техніка статистичного зведення.
- •10. Метод групування. Види групування. Основні завдання групування.
- •11. Типологічне, структурне і аналітичне групування.
- •12. Принципи вибору групувальної ознаки.
- •13. Визначення кількості груп, величини інтервалу.
- •14. Види інтервалів, межі інтервалів.
- •15. Статистичні ряди розподілу,види та їх елементи.
- •16. Графічне зображення рядів розподілу.
- •17.Статистичні таблиці
- •18. Абсолютні величини
- •19.Відносні величини
- •20. Види відносних величин
- •21. Середні величини
- •22.Степеневі середні
- •23. Середня арифметична проста і зважена
- •24. Середня гармонійна
- •25. Середня геометрична
- •1.Визначеняя статистики
- •2. Предмет статистики
- •3. Основні стадії статистичного дослідження. Методи статистики.
- •4.Основні поняття,категорії
- •5.Статистичне спостереження
- •6.Види і способи спостереження
- •7.Статистична звітність
- •26. Середня хронологічна
- •27. Структурні середні: мода, медіана, квартили, децили.
- •28. Абсолютні і відносні показники варіації
- •29. Асиметричні розподіли. Показники асиметрії.
- •31. Методи і способи відбору одиниць у вибіркову сукупність.
- •32. Вивчення взаємозв'язку явищ. Причина і наслідок.
- •33. Типи залежностей. Оцінка тісноти зв'язку за допомогою коефіцієнта кореляції.
- •34. Побудова лінійного рівняння регресії.
- •35. Методи оцінки зв'язку рангових показників. Коефіцієнти кореляції Спірмена і Кендалла.
- •36. Коефіцієнти асоціації і контингенціі. Відношення шансів.
- •37. Ряди динаміки, їх види та основні елементи.
- •39. Порівнянність рядів динаміки. Методи приведення рядів динаміки до порівнянного вигляду.
- •40. Визначення основних тенденцій. Методи ковзної середньої.
- •41. Графічне зображення динамічних рядів.
- •43. Індивідуальні індекси.
- •44. Основні принципи індексного методу.
- •45. Агрегатна форма - основна форма загального індексу.
- •46. Агрегатні індекси кількісних та якісних показників.
- •47. Індекси Пааше і Ласпейреса.
- •48. Середні індекси: середній арифметичний і середній гармонічний.
- •49. Взаємозв'язок індексів і індексні системи. Багатофакторні індексні моделі.
- •50. Індекси середніх величин, їх види і економічний сенс:
34. Побудова лінійного рівняння регресії.
Важливою
характеристикою кореляційного зв’язку
є лінія
регресії
— емпірична в моделі аналітичного
групування і теоретична в моделі
регресійного аналізу. Емпірична
лінія регресії
представлена груповими середніми
результативної ознаки
,кожна
з яких належить до відповідного інтервалу
значень групувального фактора хj.
Теоретична
лінія регресії
описується певною функцією
яку
називають рівнянням
регресії,
а Y
— теоретичним
рівнем результативної ознаки.
Різні явища по-різному реагують на зміну факторів. Для того щоб відобразити характерні особливості зв’язку конкретних явищ, статистика використовує різні за функціональним видом регресійні рівняння. Якщо зі зміною фактора х результат у змінюється більш-менш рівномірно, такий зв’язок описується лінійною функцією Y = a + bx. Коли йдеться про нерівномірне співвідношення варіацій взаємозв’язаних ознак (наприклад, коли прирости значень у зі зміною х прискорені чи сповільнені або напрям зв’язку змінюється), застосовують нелінійні регресії, зокрема: степеневу, гіперболічну, параболічну.
тощо.
35. Методи оцінки зв'язку рангових показників. Коефіцієнти кореляції Спірмена і Кендалла.
Оцінка щільності стохастичного зв’язку ґрунтується на відхиленнях частот (часток) умовного та безумовного розподілів, тобто на відхиленнях фактичних частот fij від теоретичних Fij, пропорційних до підсумкових:
,
де
fi0
—
підсумкові частоти за ознакою
x;
f0j
— підсумкові
частоти за ознакою
;
—обсяг
сукупності
.
Абсолютну величину відхилень фактичних частот fij від пропорційних Fij характеризує квадратична спряженість 2 Пірсона:
.
Відносною мірою щільності стохастичного зв’язку слугує коефіцієнт взаємної спряженості (співзалежності). За умови, що mx = my використовують формулу Чупрова:
,
де mx — число груп за ознакою x; my — число груп за ознакою y. Оскільки за відсутності зв’язку між ознаками 2 = 0, то і С = 0. При функціональному зв’язку C 1. У разі, коли mx mx, віддають перевагу коефіцієнту спряженості Крамера:
,
де mmin — мінімальне число груп (mx або my).
36. Коефіцієнти асоціації і контингенціі. Відношення шансів.
У
літературі зі статистики коефіцієнт
коефіцієнт взаємної спряженості
для
4-клітинкової таблиці називається
коефіцієнтом
контингенції
або асоціації.
Очевидно,
що за змістом він ідентичний коефіцієнту
взаємної спряженості,
а з 2
пов’язаний
функціонально:
2
= nC2.
Корисною мірою при аналізі 4-клітинкових таблиць взаємної спряженості є відношення перехресних добутків або відношення шансів
Відношення шансів характеризує міру відносного ризику.