- •В.П. Гергель, р.Г. Стронгин Основы параллельных вычислений для многопроцессорных вычислительных систем
- •1. Принципы построения параллельных вычислительных систем
- •2. Моделирование и анализ параллельных вычислений
- •3. Оценка коммуникационной трудоемкости параллельных алгоритмов
- •4. Параллельные численные алгоритмы для решения типовых задач вычислительной математики
- •5. Модели функционирования параллельных программ
- •6. Учебно-практическая задача: Решение дифференциальных уравнений в частных производных
- •Введение
- •"Многопроцессорные системы и параллельное программирование"
- •1. Цели и задачи курса
- •1. Цель преподавания курса
- •2. Задачи курса
- •3. Дисциплины, изучение которых необходимо при освоении данного курса
- •2. Принципы построения параллельных вычислительных систем
- •4. Принципы разработки параллельных алгоритмов и программ
- •6. Параллельные численные алгоритмы для решения типовых задач вычислительной математики
- •Часть 2. Методы параллельного программирования для вычислительных систем с общей памятью
- •8. Практикум по использованию библиотек параллельных методов для решения сложных научно-технических задач - 4 часа
- •9. Практикум по методам параллельных вычислений для решения задач многомерной многоэкстремальной оптимизации -4 часа
- •Учебно-методические материалы по дисциплине Основная литература
- •Дополнительная литература
- •Учебно-методические пособия
- •Информационные ресурсы сети Интернет
- •1. Принципы построения параллельных вычислительных систем
- •1.1. Пути достижения параллелизма
- •1.2. Классификация вычислительных систем
- •1.3. Характеристика типовых схем коммуникации в многопроцессорных вычислительных системах
- •1.4. Высокопроизводительный вычислительный кластер ннгу
- •4. Параллельные численные методы для решения типовых задач вычислительной математики
- •4.1. Вычисление частных сумм последовательности числовых значений
- •Последовательный алгоритм суммирования
- •Каскадная схема суммирования
- •Модифицированная каскадная схема
- •Вычисление всех частных сумм
- •4.2. Умножение матрицы на вектор
- •Достижение максимально возможного быстродействия ()
- •Использование параллелизма среднего уровня ()
- •Организация параллельных вычислений при
- •Использование ограниченного набора процессоров ()
- •4.3. Матричное умножение
- •Макрооперационный анализ алгоритмов решения задач
- •Организация параллелизма на основе разделения данных
- •4.4. Сортировка
- •Параллельное обобщение базовой операции сортировки
- •Пузырьковая сортировка
- •Сортировка Шелла
- •Быстрая сортировка
- •4.5. Обработка графов
- •Нахождение минимально охватывающего дерева
- •Поиск кратчайших путей
- •6. Учебно-практическая задача: Решение дифференциальных уравнений в частных производных
- •6.1. Последовательные методы решения задачи Дирихле
- •6.2. Организация параллельных вычислений для систем с общей памятью
- •Использование OpenMp для организации параллелизма
- •Проблема синхронизации параллельных вычислений
- •Возможность неоднозначности вычислений в параллельных программах
- •Проблема взаимоблокировки
- •Исключение неоднозначности вычислений
- •Волновые схемы параллельных вычислений
- •Балансировка вычислительной нагрузки процессоров
- •6.3. Организация параллельных вычислений для систем с распределенной памятью
- •Разделение данных
- •Обмен информацией между процессорами
- •Коллективные операции обмена информацией
- •Организация волны вычислений
- •Блочная схема разделения данных
- •Оценка трудоемкости операций передачи данных
Исключение неоднозначности вычислений
Подход, рассмотренный в п. 4, уменьшает эффект состязания потоков, но не гарантирует единственности решения при повторении вычислений. Для достижения однозначности необходимо использование дополнительных вычислительных схем.
Возможный и широко применяемый в практике расчетов способ состоит в разделении места хранения результатов вычислений на предыдущей и текущей итерациях метода сеток. Схема такого подхода может быть представлена в следующем общем виде:
// Алгоритм 6.4
omp_lock_t dmax_lock;
omp_init_lock(dmax_lock);
do {
dmax = 0; // максимальное изменение значений u
#pragma omp parallel for shared(u,n,dmax) private(i,temp,d,dm)
for ( i=1; i<N+1; i++ ) {
dm = 0;
for ( j=1; j<N+1; j++ ) {
temp = u[i][j];
un[i][j] = 0.25*(u[i-1][j]+u[i+1][j]+
u[i][j-1]+u[i][j+1]–h*h*f[i][j]);
d = fabs(temp-un[i][j]);
if ( dm < d ) dm = d;
}
omp_set_lock(dmax_lock);
if ( dmax < dm ) dmax = dm;
omp_unset_lock(dmax_lock);
}
} // конец параллельной области
for ( i=1; i<N+1; i++ ) // обновление данных
for ( j=1; j<N+1; j++ )
u[i][j] = un[i][j];
} while ( dmax > eps );
Как
следует из приведенного алгоритма,
результаты предыдущей итерации
запоминаются в массиве u,
новые вычисления значения запоминаются
в дополнительном массиве un.
Как результат, независимо от порядка
выполнения вычислений для проведения
расчетов всегда используются значения
величин
от
предыдущей итерации метода. Такая схема
реализация сеточных алгоритмов обычно
именуетсяметодом
Гаусса-Якоби.
Этот метод гарантирует однозначность
результаты независимо от способа
распараллеливания, но требует использования
большого дополнительного объема памяти
и обладает меньшей (по сравнению с
алгоритмом Гаусса-Зейделя) скоростью
сходимости. Результаты расчетов с
последовательным и параллельным
вариантами метода приведены в табл.
6.2.
Таблица 6.2. Результаты вычислительных экспериментов для алгоритма Гаусса-Якоби (p=4)

(k – количество итераций, t – время в сек., S – ускорение)
Иной возможный подход для устранения взаимозависимости параллельных потоков состоит в применении схемы чередования обработки четных и нечетных строк (red/black row alternation scheme), когда выполнение итерации метода сеток подразделяется на два последовательных этапа, на первом из которых обрабатываются строки только с четными номерами, а затем на втором этапе - строки с нечетными номерами (см. рис. 6.7). Данная схема может быть обобщена на применение одновременно и к строкам, и к столбцам (шахматное разбиение) области расчетов.
Рассмотренная схема чередования строк не требует по сравнению с методом Якоби какой-либо дополнительной памяти и обеспечивает однозначность решения при многократных запусках программы. Но следует заметить, что оба рассмотренных в данном пункте подхода могут получать результаты, не совпадающие с решением задачи Дирихле, найденном при помощи последовательного алгоритма. Кроме того, эти вычислительные схемы имеют меньшую область и худшую скорость сходимости, чем исходный вариант метода Гаусса-Зейделя.

Рис. 6.7. Схема чередования обработки четных и нечетных строк
