
- •Грин б.Элегантная Вселенная. — м.: Едиториал урсс, 2004. — 288 с.
- •Предисловие
- •Часть I. На переднем краю познания Глава 1. Связанные струной
- •Три конфликта
- •Глава 1. Связанные струной 13
- •Вселенная в своем самом малом, или что мы знаем о материи
- •Глава 1. Связанные струной 15
- •Взаимодействия, или куда делся фотон
- •Глава 1. Связанные струной 17
- •Теория струн: основная идея
- •Глава 1. Связанные струной 19
- •Теория струн как единая теория всего
- •Глава 1. Связанные струной 21
- •Современное состояние теории струн
- •Часть II. Дилемма пространства, времени и квантов Глава 2. Пространство, время и взгляд наблюдателя
- •Интуиция и ее изъяны
- •Глава 2. Пространство, время и взгляд наблюдателя 25
- •Принцип относительности
- •Глава 2. Пространство, время и взгляд наблюдателя 27
- •Скорость света
- •Глава 2. Пространство, время и взгляд наблюдателя 29
- •Истина и ее последствия
- •Влияние на время. Часть I
- •Глава 2. Пространство, время и взгляд наблюдателя 31
- •Влияние на время. Часть II
- •Глава 2. Пространство, время и взгляд наблюдателя 33
- •Глава 2. Пространство, время и взгляд наблюдателя 35
- •Жизнь на бегу
- •И все же: кто движется?
- •Глава 2. Пространство, время и взгляд наблюдателя 37
- •Влияние движения на пространство
- •Движение в пространстве-времени
- •Глава 2. Пространство, время и взгляд наблюдателя 39
- •Глава 2. Пространство, время и взгляд наблюдателя 41
- •Глава 3. 0б искривлениях и волнистой ряби
- •Ньютоновский взгляд на гравитацию
- •Несовместимость ньютоновской теории тяготения и специальной теории относительности
- •Глава 3. 06 искривлениях и волнистой ряби 45
- •Самая счастливая идея Эйнштейна
- •Глава 3. Об искривлениях и волнистой ряби 47
- •Ускорение и искривление пространства и времени
- •Глава 3. Об искривлениях и волнистой ряби 49
- •Глава 3. Об искривлениях и волнистой ряби 51
- •Основы общей теории относительности
- •Глава 3. Об искривлениях и волнистой ряби 53
- •Некоторые замечания
- •Глава 3. Об искривлениях и волнистой ряби 55
- •Разрешение противоречия
- •Снова об искривлении времени
- •Глава 3. 06 искривлениях и волнистой ряби 57
- •Экспериментальное подтверждение общей теории относительности
- •Глава 3. Об искривлениях и волнистой ряби 59
- •Черные дыры, Большой взрыв и расширение Вселенной
- •Глава 3. 06 искривлениях и волнистой ряби 61
- •Верна ли общая теория относительности?
- •Глава 3. Об искривлениях и волнистой ряби 63
- •Глава 4. Микроскопические странности
- •Глава 4. Микроскопические странности 65 Квантовая теория
- •На кухне слишком жарко
- •Глава 4. Микроскопические странности 67
- •Деление на порции на рубеже веков
- •Глава 4. Микроскопические странности 69
- •Что представляют собой порции?
- •Глава 4. Микроскопические странности 71
- •Волна или частица?
- •Глава 4. Микроскопические странности 73
- •Глава 4. Микроскопические странности 75
- •Частицы материи также являются волнами
- •Волны чего?
- •Глава 4. Микроскопические странности 77
- •Точка зрения Фейнмана
- •Глава 4. Микроскопические странности 79
- •Глава 4. Микроскопические странности 81
- •Квантовые чудеса
- •Глава 4. Микроскопические странности 83
- •Глава 5. Необходимость новой теории: общая теория относительности versus квантовая механика
- •Суть квантовой механики
- •Глава 5. Необходимость новой теории: ото versus квантовая механика 87
- •Квантовая теория поля
- •Глава 5. Необходимость новой теории: ото versus квантовая механика 89
- •Частицы-посланники
- •Калибровочная симметрия
- •Глава 5. Необходимость новой теории: ото versus квантовая механика 91
- •Общая теория относительности и квантовая механика
- •Глава 5. Необходимость новой теории: ото versus квантовая механика 93
- •Часть III. Космическая симфония Глава 6 Только музыка, или Суть теории суперструн
- •Краткая история теории струн
- •Снова атомы в духе древних греков?
- •100 Часть III. Космическая симфония
- •Объединение через теорию струн
- •Глава 6. Только музыка, или Суть теории суперструн 101
- •Музыка теории струн
- •Глава 6. Только музыка, или Суть теории суперструн 103
- •Три следствия жестких струн
- •Глава 6. Только музыка, или Суть теории суперструн 105
- •Гравитация и квантовая механика в теории струн
- •Грубый ответ
- •Глава 6. Только музыка, или Суть теории суперструн 107
- •Глава 6. Только музыка, или Суть теории суперструн 109
- •Ловкость рук?
- •Более точный ответ
- •Глава 6. Только музыка, или Суть теории суперструн 111
- •Глава 6. Только музыка, или Суть теории суперструн 113
- •Не только струны?
- •Глава 7. «Супер» в суперструнах
- •Характер физических законов
- •Глава 7. «Супер» в суперструнах 117
- •Глава 7. «Супер» в суперструнах 119
- •Суперсимметрия и суперпартнеры
- •Доводы в пользу суперсимметрии — до появления теории струн
- •Глава 7. «Супер» в суперструнах 121
- •Глава 7. «Супер» в суперструнах 123
- •Суперсимметрия в теории струн
- •Глава 7. «Супер» в суперструнах 125
- •Суперпроблема изобилия
- •Глава 8. Измерений больше, чем видит глаз
- •Иллюзия привычного
- •Идея Калуцы и уточнение Клейна
- •Глава 8. Измерений больше, чем видит глаз 129
- •Глава 8. Измерений больше, чем видит глаз 131
- •Взад и вперед по Садовому шлангу
- •Глава 8. Измерений больше, чем видит глаз 133
- •Объединение в высших измерениях
- •Глава 8. Измерений больше, чем видит глаз 135
- •Современное состояние теории Калуцы—Клейна
- •Глава 8. Измерений больше, чем видит глаз 137
- •Дополнительные измерения и теория струн
- •Глава 8. Измерений больше, чем видит глаз 139
- •Некоторые вопросы
- •Физические следствия дополнительных измерений
- •Глава 8. Измерений больше, чем видит глаз 141
- •Как выглядят свернутые измерения?
- •Глава 9. Дымящееся ружье: экспериментальные свидетельства
- •Перекрестный огонь критики
- •Глава 9. Дымящееся ружье: экспериментальные свидетельства 145
- •Дорога к эксперименту
- •Глава 9. Дымящееся ружье: экспериментальные свидетельства 147
- •Перебирая возможности
- •Глава 9. Дымящееся ружье: экспериментальные свидетельства 149
- •Суперчастицы
- •Глава 9. Дымящееся ружье: экспериментальные свидетельства 151
- •Частицы с дробным электрическим зарядом
- •Некоторые более отдаленные перспективы
- •Глава 9. Дымящееся ружье: экспериментальные свидетельства 153
- •Оценка ситуации
- •Часть IV. Теория струн и структура пространства-времени Глава 10. Квантовая геометрия
- •Суть римановой геометрии
- •Глава 10. Квантовая геометрия 157
- •Космологическая сцена
- •Существенно новая черта
- •Глава 10. Квантовая геометрия 159
- •Физические свойства намотанных струн
- •Спектр состояний струны *)
- •Глава 10. Квантовая геометрия 161
- •Глава 10. Квантовая геометрия 163
- •Спор двух профессоров
- •Глава 10. Квантовая геометрия 165
- •Три вопроса
- •Два взаимосвязанных понятия расстояния в теории струн
- •Глава 10. Квантовая геометрия 167
- •Минимальный размер
- •Глава 10. Квантовая геометрия 169
- •Насколько общий этот вывод?
- •Зеркальная симметрия
- •Глава 10. Квантовая геометрия 171
- •Физика и математика зеркальной симметрии
- •Глава 10. Квантовая геометрия 173
- •Глава 11. Разрывая ткань пространства
- •Глава 11. Разрывая ткань пространства 177 Волнующая возможность
- •Зеркальная перспектива
- •Глава 11. Разрывая ткань пространства 179
- •Медленный прогресс
- •Рождение стратегии
- •Глава 11. Разрывая ткань пространства 181
- •Поздние вечера в последней обители Эйнштейна
- •Глава 11. Разрывая ткань пространства 183
- •О шести банках пива и работе по выходным
- •Момент истины
- •Подход Виттена
- •Глава 11. Разрывая ткань пространства 185
- •Следствия
- •Глава 12. За рамками струн: в поисках м-теории
- •Краткое изложение результатов второй революции в теории суперструн
- •Глава 12. За рамками струн: в поисках м-теории 189
- •Приближенный метод
- •Классический пример теории возмущений
- •Глава 12. За рампами струн: в поисках м-теории 191
- •Использование теории возмущений в теории струн
- •Глава 12. Jo рамками струн: в поисках м-теории 193
- •Приближает ли к ответу приближение?
- •Уравнения теории струн
- •Глава 12. За рамками струн: в поисках м-теории 195
- •Дуальность
- •Глава 12. За рамками струн: в поисках м-теории 197
- •Мощь симметрии
- •Глава 12. За рампами струн: в поисках м-твории 199
- •Дуальность в теории струн
- •Предварительные итоги
- •Глава 12. За рамками струн: в поисках м-теории 201
- •Супергравитация
- •Проблески м-теории
- •Глава 12. За рамками струн: в поисках м-твории 203
- •Глава 12. За рамками струн: в поисках м-теории 205
- •Общая панорама
- •Сюрприз в м-теории: демократия в протяжении
- •Глава 12. За рамками струн: в поисках м-теории 207
- •Помогает ли это в неразрешенных вопросах теории струн?
- •Глава 13. Черные дыры с точки зрения теории струн и м-теории
- •Черные дыры и элементарные частицы
- •Позволяет ли теория струн продвигаться вперед?
- •Глава 13. Черные дыры с точки зрения теории струн и м-теории 211
- •Убежденно разрывая ткань пространства
- •Глава 13. Черные дыры с точки зрения теории струн и м-теории 213
- •Шквал электронной почты
- •Снова о черных дырах и элементарных частицах
- •Глава 13. Черные дыры с точки зрения теории струн и м-теории 215
- •«Таяние» черных дыр
- •Энтропия черной дыры
- •Глава 13. Черные дыры с точки зрения теории струн и м-теории 217
- •Насколько черно черное?
- •Глава 13. Черные дыры с точки зрения теории струн и м-теории 219
- •Ваш выход, теория струн!
- •Глава 13. Черные дыры с точки зрения теории струн и м-теории 221
- •Нераскрытые тайны черных дыр
- •Глава 13. Черные дыры с точки зрения теории струн и м-теории 223
- •Глава 14. Размышления о космологии
- •Стандартная космологическая модель
- •Глава 14. Размышления о космологии 225
- •Проверка модели Большого взрыва
- •Глава 14. Размышления о космологии 227
- •От планковских времен до сотых долей секунды после Большого взрыва
- •Космологическая загадка
- •Глава 14. Размышления о космологии 229
- •Инфляция
- •Глава 14. Размышления о космологии 231
- •Космология и теория суперструн
- •В начале был комок планковских размеров
- •Почему три?
- •Глава 14. Размышления о космологии 233
- •Космология и вид пространств Калаби—Яу
- •До начала?
- •Глава 14. Размышления о космологии 235
- •Рассуждения о космологии и окончательная теория
- •Глава 14. Размышления о космологии 237
- •Глава 14. Размышления о космологии 239
- •Часть V. Единая теория в XXI веке Глава 15. Перспективы
- •Глава 15. Перспективы 241 Что является фундаментальным принципом теории струн?
- •Что есть пространство и время на самом деле, и можем ли мы без них обойтись?
- •Глава 15. Перспективы 243
- •Глава 15. Перспективы 245 Приведет ли теория струн к переформулировке квантовой механики?
- •Можно ли теорию струн проверить экспериментально?
- •Глава 15. Перспективы 247
- •Существуют ли пределы познания?
- •Достичь звезд
- •Глава 15. Перспективы 249
- •Примечания
- •Глава 1
- •Глава 2
- •Глава 3
- •Глава 4
- •Глава 5
- •Глава 6
- •Глава 7
- •Глава 8
- •Глава 9
- •Глава 10
- •Глава 11
- •Глава 12
- •Глава 13
- •Глава 14
- •Глава 15
- •Словарь научных терминов
- •Рекомендуемая литература
- •Именной указатель
- •Предметный указатель
- •Оглавление
- •Глава 3
- •Глава 4
- •Глава 5
- •Часть III
- •Глава 6
- •Глава 7
- •Глава 8
- •Глава 9
- •Часть IV
- •Глава 10
- •Глава 11
- •Глава 12
- •Глава 13
- •Глава 14
- •Часть V
- •Глава 15
- •Электронное оглавление
- •Глава 4. Микроскопические странности 64
- •Глава 13. Черные дыры с точки зрения теории струн и м-теории 209
- •Глава 14. Размышления о космологии 224
- •Часть V. Единая теория в XXI веке 240
- •Глава 15. Перспективы 240
Существенно новая черта
Не нужно много времени, чтобы обнаружить существенно новую характеристику физики
Глава 10. Квантовая геометрия 159
|
|
Рис. 10.2. Точечные частицы, движущиеся по цилиндру |
|
| |
Рис. 10.3. Струны на цилиндре могут двигаться в двух конфигурациях — «ненамотанной» или «намотанной» |
струн. В нашей двумерной вселенной точечная частица может двигаться так, как показано на рис. 10.2: вдоль протяженного измерения Садового шланга, вдоль циклического измерения, или по обоим измерениям сразу. Замкнутая струна может совершать аналогичные движения, с той разницей, что при движении по поверхности струна колеблется (рис. 10.3 а). Это различие уже обсуждалось выше. Вследствие колебаний струна приобретает определенные характеристики, например массу и заряд. Это один из ключевых фактов теории струн, но он не является предметом настоящего обсуждения, так как его физические следствия уже рассмотрены выше.
Сейчас нас интересует другое отличие между движением частиц и струн, непосредственно связанное с формой пространства, где движется струна. Так как струна является протяженным объектом, она может существовать еще в одной конфигурации, отличной от упомянутых выше. Струна может наматываться (как лассо) на циклическое измерение вселенной Садового шланга (рис. 10.3б)1). Струна будет продолжать скользить и колебаться, но находясь в этой расширенной конфигурации. На самом деле, струна может намотаться на циклическое измерение любое число раз (как показано на том же рисунке) и одновременно осуществлять колебательные движения в ходе своего скольжения. Если струна имеет подобную намотанную конфигурацию, мы говорим, что она находится в топологической моде движения. Ясно, что топологическая мода может существовать только у струн. У точечных частиц не существует аналога этой моды. Попытаемся понять влияние этого качественно нового типа движения струны как на свойства самой струны, так и на геометрические свойства измерения, вокруг которого она намотана.
Физические свойства намотанных струн
Выше при обсуждении движения струн основное внимание уделялось ненамотанным струнам. Струны, которые могут наматываться по циклической пространственной координате, имеют почти тот же набор свойств, что и рассмотренные выше струны. Их колебания также вносят существенный вклад в наблюдаемые величины. Главное отличие состоит в том, что у намотанной струны имеется минимальная масса, определяемая размером циклического измерения и числом оборотов струны вокруг него. Колебания струны дают добавку к этой минимальной массе.
Нетрудно понять причину существования минимальной массы. У намотанной струны есть ограничение на минимальную длину: это ограничение определяется длиной окружности циклического измерения и числом оборотов струны вокруг этого измерения. Минимальная длина струны определяет ее минимальную массу. Чем больше эта длина, тем больше и масса, потому что при увеличении длины струна «растет». Так как длина окружности пропорциональна радиусу, минимальные вклады топологической моды в массу струны пропорциональны радиусу окружности, на которую намотана струна. Учитывая соотношение Эйнштейна Е = тс2, связывающее массу и энергию, можно, кроме того, утверждать, что сосредоточенная в намотанной струне энергия пропорциональна радиусу циклического измерения. (У ненамотанных струн тоже есть очень малая минимальная длина, иначе это были бы не струны, а точечные частицы.
160 Часть IV. Теория струн и структура пространства-времени
Аналогичные аргументы могли бы привести к заключению, что и ненамотанные струны имеют хоть и малую, но все же отличную от нуля массу. В определенном смысле это так, но квантово-механические поправки, рассмотренные в главе 6 (см. аналогию с телеигрой Верная цена), могут в точности сократить этот массовый вклад. Напомним, что именно так и происходит, когда в спектре ненамотанной струны возникают фотоны, гравитоны, а также другие безмассовые частицы или частицы с очень малой массой. Намотанные струны в этом отношении отличаются от ненамотанных.)
Каким образом существование топологических конфигураций струн влияет на геометрические свойства измерения, вокруг которого наматываются струны? Ответ, который был дан в 1984 г. японскими физиками Кейджи Киккавой и Масами Ямасаки, весьма примечателен и очень нетривиален.
Посмотрим, что происходит на последних катастрофических этапах Большого сжатия вселенной Садового шланга. Когда радиус циклического измерения достигает планковской длины и, в духе общей теории относительности, продолжает стягиваться до меньших размеров, в этот момент, согласно теории струн, необходим радикальный пересмотр модели происходящего. В теории струн утверждается, что в случае, когда радиус циклического измерения становится меньше планковской длины и продолжает уменьшаться, все физические процессы во вселенной Садового шланга происходят идентично физическим процессам в случае, когда радиус циклического измерения больше планковской длины и увеличивается! Это означает, что когда радиус циклического измерения пытается преодолеть рубеж планковской длины в сторону меньших размеров, эти попытки предотвращаются теорией струн, которая в этот момент меняет правила геометрии на противоположные. Теория струн говорит о том, что такую эволюцию можно переформулировать, т. е. переосмыслить, сказав, что когда циклическое измерение стянется до планковской длины, затем оно начнет расширяться. Законы геометрии на малых расстояниях переписываются в теории струн таким образом, что то, что ранее казалось полным космическим коллапсом, становится космическим расширением. Циклическое измерение может сжаться до планковской длины. Однако благодаря топологическим модам все попытки дальнейшего сжатия в действительности приведут к расширению. Рассмотрим, почему это происходит.