
- •Грин б.Элегантная Вселенная. — м.: Едиториал урсс, 2004. — 288 с.
- •Предисловие
- •Часть I. На переднем краю познания Глава 1. Связанные струной
- •Три конфликта
- •Глава 1. Связанные струной 13
- •Вселенная в своем самом малом, или что мы знаем о материи
- •Глава 1. Связанные струной 15
- •Взаимодействия, или куда делся фотон
- •Глава 1. Связанные струной 17
- •Теория струн: основная идея
- •Глава 1. Связанные струной 19
- •Теория струн как единая теория всего
- •Глава 1. Связанные струной 21
- •Современное состояние теории струн
- •Часть II. Дилемма пространства, времени и квантов Глава 2. Пространство, время и взгляд наблюдателя
- •Интуиция и ее изъяны
- •Глава 2. Пространство, время и взгляд наблюдателя 25
- •Принцип относительности
- •Глава 2. Пространство, время и взгляд наблюдателя 27
- •Скорость света
- •Глава 2. Пространство, время и взгляд наблюдателя 29
- •Истина и ее последствия
- •Влияние на время. Часть I
- •Глава 2. Пространство, время и взгляд наблюдателя 31
- •Влияние на время. Часть II
- •Глава 2. Пространство, время и взгляд наблюдателя 33
- •Глава 2. Пространство, время и взгляд наблюдателя 35
- •Жизнь на бегу
- •И все же: кто движется?
- •Глава 2. Пространство, время и взгляд наблюдателя 37
- •Влияние движения на пространство
- •Движение в пространстве-времени
- •Глава 2. Пространство, время и взгляд наблюдателя 39
- •Глава 2. Пространство, время и взгляд наблюдателя 41
- •Глава 3. 0б искривлениях и волнистой ряби
- •Ньютоновский взгляд на гравитацию
- •Несовместимость ньютоновской теории тяготения и специальной теории относительности
- •Глава 3. 06 искривлениях и волнистой ряби 45
- •Самая счастливая идея Эйнштейна
- •Глава 3. Об искривлениях и волнистой ряби 47
- •Ускорение и искривление пространства и времени
- •Глава 3. Об искривлениях и волнистой ряби 49
- •Глава 3. Об искривлениях и волнистой ряби 51
- •Основы общей теории относительности
- •Глава 3. Об искривлениях и волнистой ряби 53
- •Некоторые замечания
- •Глава 3. Об искривлениях и волнистой ряби 55
- •Разрешение противоречия
- •Снова об искривлении времени
- •Глава 3. 06 искривлениях и волнистой ряби 57
- •Экспериментальное подтверждение общей теории относительности
- •Глава 3. Об искривлениях и волнистой ряби 59
- •Черные дыры, Большой взрыв и расширение Вселенной
- •Глава 3. 06 искривлениях и волнистой ряби 61
- •Верна ли общая теория относительности?
- •Глава 3. Об искривлениях и волнистой ряби 63
- •Глава 4. Микроскопические странности
- •Глава 4. Микроскопические странности 65 Квантовая теория
- •На кухне слишком жарко
- •Глава 4. Микроскопические странности 67
- •Деление на порции на рубеже веков
- •Глава 4. Микроскопические странности 69
- •Что представляют собой порции?
- •Глава 4. Микроскопические странности 71
- •Волна или частица?
- •Глава 4. Микроскопические странности 73
- •Глава 4. Микроскопические странности 75
- •Частицы материи также являются волнами
- •Волны чего?
- •Глава 4. Микроскопические странности 77
- •Точка зрения Фейнмана
- •Глава 4. Микроскопические странности 79
- •Глава 4. Микроскопические странности 81
- •Квантовые чудеса
- •Глава 4. Микроскопические странности 83
- •Глава 5. Необходимость новой теории: общая теория относительности versus квантовая механика
- •Суть квантовой механики
- •Глава 5. Необходимость новой теории: ото versus квантовая механика 87
- •Квантовая теория поля
- •Глава 5. Необходимость новой теории: ото versus квантовая механика 89
- •Частицы-посланники
- •Калибровочная симметрия
- •Глава 5. Необходимость новой теории: ото versus квантовая механика 91
- •Общая теория относительности и квантовая механика
- •Глава 5. Необходимость новой теории: ото versus квантовая механика 93
- •Часть III. Космическая симфония Глава 6 Только музыка, или Суть теории суперструн
- •Краткая история теории струн
- •Снова атомы в духе древних греков?
- •100 Часть III. Космическая симфония
- •Объединение через теорию струн
- •Глава 6. Только музыка, или Суть теории суперструн 101
- •Музыка теории струн
- •Глава 6. Только музыка, или Суть теории суперструн 103
- •Три следствия жестких струн
- •Глава 6. Только музыка, или Суть теории суперструн 105
- •Гравитация и квантовая механика в теории струн
- •Грубый ответ
- •Глава 6. Только музыка, или Суть теории суперструн 107
- •Глава 6. Только музыка, или Суть теории суперструн 109
- •Ловкость рук?
- •Более точный ответ
- •Глава 6. Только музыка, или Суть теории суперструн 111
- •Глава 6. Только музыка, или Суть теории суперструн 113
- •Не только струны?
- •Глава 7. «Супер» в суперструнах
- •Характер физических законов
- •Глава 7. «Супер» в суперструнах 117
- •Глава 7. «Супер» в суперструнах 119
- •Суперсимметрия и суперпартнеры
- •Доводы в пользу суперсимметрии — до появления теории струн
- •Глава 7. «Супер» в суперструнах 121
- •Глава 7. «Супер» в суперструнах 123
- •Суперсимметрия в теории струн
- •Глава 7. «Супер» в суперструнах 125
- •Суперпроблема изобилия
- •Глава 8. Измерений больше, чем видит глаз
- •Иллюзия привычного
- •Идея Калуцы и уточнение Клейна
- •Глава 8. Измерений больше, чем видит глаз 129
- •Глава 8. Измерений больше, чем видит глаз 131
- •Взад и вперед по Садовому шлангу
- •Глава 8. Измерений больше, чем видит глаз 133
- •Объединение в высших измерениях
- •Глава 8. Измерений больше, чем видит глаз 135
- •Современное состояние теории Калуцы—Клейна
- •Глава 8. Измерений больше, чем видит глаз 137
- •Дополнительные измерения и теория струн
- •Глава 8. Измерений больше, чем видит глаз 139
- •Некоторые вопросы
- •Физические следствия дополнительных измерений
- •Глава 8. Измерений больше, чем видит глаз 141
- •Как выглядят свернутые измерения?
- •Глава 9. Дымящееся ружье: экспериментальные свидетельства
- •Перекрестный огонь критики
- •Глава 9. Дымящееся ружье: экспериментальные свидетельства 145
- •Дорога к эксперименту
- •Глава 9. Дымящееся ружье: экспериментальные свидетельства 147
- •Перебирая возможности
- •Глава 9. Дымящееся ружье: экспериментальные свидетельства 149
- •Суперчастицы
- •Глава 9. Дымящееся ружье: экспериментальные свидетельства 151
- •Частицы с дробным электрическим зарядом
- •Некоторые более отдаленные перспективы
- •Глава 9. Дымящееся ружье: экспериментальные свидетельства 153
- •Оценка ситуации
- •Часть IV. Теория струн и структура пространства-времени Глава 10. Квантовая геометрия
- •Суть римановой геометрии
- •Глава 10. Квантовая геометрия 157
- •Космологическая сцена
- •Существенно новая черта
- •Глава 10. Квантовая геометрия 159
- •Физические свойства намотанных струн
- •Спектр состояний струны *)
- •Глава 10. Квантовая геометрия 161
- •Глава 10. Квантовая геометрия 163
- •Спор двух профессоров
- •Глава 10. Квантовая геометрия 165
- •Три вопроса
- •Два взаимосвязанных понятия расстояния в теории струн
- •Глава 10. Квантовая геометрия 167
- •Минимальный размер
- •Глава 10. Квантовая геометрия 169
- •Насколько общий этот вывод?
- •Зеркальная симметрия
- •Глава 10. Квантовая геометрия 171
- •Физика и математика зеркальной симметрии
- •Глава 10. Квантовая геометрия 173
- •Глава 11. Разрывая ткань пространства
- •Глава 11. Разрывая ткань пространства 177 Волнующая возможность
- •Зеркальная перспектива
- •Глава 11. Разрывая ткань пространства 179
- •Медленный прогресс
- •Рождение стратегии
- •Глава 11. Разрывая ткань пространства 181
- •Поздние вечера в последней обители Эйнштейна
- •Глава 11. Разрывая ткань пространства 183
- •О шести банках пива и работе по выходным
- •Момент истины
- •Подход Виттена
- •Глава 11. Разрывая ткань пространства 185
- •Следствия
- •Глава 12. За рамками струн: в поисках м-теории
- •Краткое изложение результатов второй революции в теории суперструн
- •Глава 12. За рамками струн: в поисках м-теории 189
- •Приближенный метод
- •Классический пример теории возмущений
- •Глава 12. За рампами струн: в поисках м-теории 191
- •Использование теории возмущений в теории струн
- •Глава 12. Jo рамками струн: в поисках м-теории 193
- •Приближает ли к ответу приближение?
- •Уравнения теории струн
- •Глава 12. За рамками струн: в поисках м-теории 195
- •Дуальность
- •Глава 12. За рамками струн: в поисках м-теории 197
- •Мощь симметрии
- •Глава 12. За рампами струн: в поисках м-твории 199
- •Дуальность в теории струн
- •Предварительные итоги
- •Глава 12. За рамками струн: в поисках м-теории 201
- •Супергравитация
- •Проблески м-теории
- •Глава 12. За рамками струн: в поисках м-твории 203
- •Глава 12. За рамками струн: в поисках м-теории 205
- •Общая панорама
- •Сюрприз в м-теории: демократия в протяжении
- •Глава 12. За рамками струн: в поисках м-теории 207
- •Помогает ли это в неразрешенных вопросах теории струн?
- •Глава 13. Черные дыры с точки зрения теории струн и м-теории
- •Черные дыры и элементарные частицы
- •Позволяет ли теория струн продвигаться вперед?
- •Глава 13. Черные дыры с точки зрения теории струн и м-теории 211
- •Убежденно разрывая ткань пространства
- •Глава 13. Черные дыры с точки зрения теории струн и м-теории 213
- •Шквал электронной почты
- •Снова о черных дырах и элементарных частицах
- •Глава 13. Черные дыры с точки зрения теории струн и м-теории 215
- •«Таяние» черных дыр
- •Энтропия черной дыры
- •Глава 13. Черные дыры с точки зрения теории струн и м-теории 217
- •Насколько черно черное?
- •Глава 13. Черные дыры с точки зрения теории струн и м-теории 219
- •Ваш выход, теория струн!
- •Глава 13. Черные дыры с точки зрения теории струн и м-теории 221
- •Нераскрытые тайны черных дыр
- •Глава 13. Черные дыры с точки зрения теории струн и м-теории 223
- •Глава 14. Размышления о космологии
- •Стандартная космологическая модель
- •Глава 14. Размышления о космологии 225
- •Проверка модели Большого взрыва
- •Глава 14. Размышления о космологии 227
- •От планковских времен до сотых долей секунды после Большого взрыва
- •Космологическая загадка
- •Глава 14. Размышления о космологии 229
- •Инфляция
- •Глава 14. Размышления о космологии 231
- •Космология и теория суперструн
- •В начале был комок планковских размеров
- •Почему три?
- •Глава 14. Размышления о космологии 233
- •Космология и вид пространств Калаби—Яу
- •До начала?
- •Глава 14. Размышления о космологии 235
- •Рассуждения о космологии и окончательная теория
- •Глава 14. Размышления о космологии 237
- •Глава 14. Размышления о космологии 239
- •Часть V. Единая теория в XXI веке Глава 15. Перспективы
- •Глава 15. Перспективы 241 Что является фундаментальным принципом теории струн?
- •Что есть пространство и время на самом деле, и можем ли мы без них обойтись?
- •Глава 15. Перспективы 243
- •Глава 15. Перспективы 245 Приведет ли теория струн к переформулировке квантовой механики?
- •Можно ли теорию струн проверить экспериментально?
- •Глава 15. Перспективы 247
- •Существуют ли пределы познания?
- •Достичь звезд
- •Глава 15. Перспективы 249
- •Примечания
- •Глава 1
- •Глава 2
- •Глава 3
- •Глава 4
- •Глава 5
- •Глава 6
- •Глава 7
- •Глава 8
- •Глава 9
- •Глава 10
- •Глава 11
- •Глава 12
- •Глава 13
- •Глава 14
- •Глава 15
- •Словарь научных терминов
- •Рекомендуемая литература
- •Именной указатель
- •Предметный указатель
- •Оглавление
- •Глава 3
- •Глава 4
- •Глава 5
- •Часть III
- •Глава 6
- •Глава 7
- •Глава 8
- •Глава 9
- •Часть IV
- •Глава 10
- •Глава 11
- •Глава 12
- •Глава 13
- •Глава 14
- •Часть V
- •Глава 15
- •Электронное оглавление
- •Глава 4. Микроскопические странности 64
- •Глава 13. Черные дыры с точки зрения теории струн и м-теории 209
- •Глава 14. Размышления о космологии 224
- •Часть V. Единая теория в XXI веке 240
- •Глава 15. Перспективы 240
Глава 8
1. Эго простая идея, однако, поскольку несовершенство нашего обычного языка приводит иногда к недопониманию, приведем два пояснения. Во-первых, мы считаем, что муравей живет на поверхности Садового шланга. Если бы муравей мог зарываться вглубь шланга, т. е. если бы он мог проникать внутрь резины, из которой сделан шланг, нам бы потребовалось три числа, чтобы указать его местоположение, поскольку нужно было бы указать, как глубоко он закопался. Однако если муравей живет только на поверхности шланга, то чтобы указать его положение, достаточно двух чисел. Отсюда следует необходимость второго пояснения. Даже тогда, когда муравей живет на поверхности шланга, мы можем, если захотим, указывать его положение с помощью трех чисел: обычных положений в направлениях влево-вправо, вперед-назад и вверх-вниз в нашем привычном трехмерном пространстве. Однако когда известно, что муравей живет на поверхности шланга, два числа, упомянутые в тексте, представляют собой минимальный набор величин, однозначно определяющих положение муравья. Именно это имелось в виду, когда мы говорили, что поверхность шланга двумерна.
2. Как ни удивительно, физики Савас Димопулос, Нима Аркани-Хамед и Гия Двали, основываясь на более ранних догадках Игнатиоса Антониадиса и Джозефа Ликкена, смогли показать, что даже если бы свернутые дополнительные измерения были столь велики, что достигали размера в один миллиметр, они могли бы оставаться необнаруженными экспериментально. Причина состоит в том, что ускорители частиц исследуют микромир с помощью сильного, слабого и электромагнитного взаимодействий. Гравитационное взаимодействие, которое при технологически достижимых энергиях остается чрезвычайно слабым, обычно игнорируется. Однако Димопулос с коллегами показали, что свернутые измерения оказывают влияние преимущественно на гравитационное взаимодействие (что выглядит вполне правдоподобно в теории струн); этот эффект вполне мог быть пропущен во всех экспериментах, выполненных до настоящего времени. В ближайшем будущем с использованием высокоточной аппаратуры будут проведены новые эксперименты по изучению гравитационных эффектов, предназначенные для поиска таких «крупных» свернутых измерений. Положительный результат будет означать одно из величайших открытий в истории человечества.
Примечания 257
3. Edwin Abbott, Flatland, Princeton: Princeton University Press, 1991. (Рус. пер.: Эббот Э. Флатляндия. М.: Амфора, 2001.)
4. Письмо А. Эйнштейна к Т. Калуце. Цитируется по книге: Abraham Pais, Subtle Is the Lord. New York: Oxford University Press, 1982, p. 330. (Рус. пер.: Пайс А. Научная деятельность и жизнь Альберта Эйнштейна. М.: Наука, Физматлит, 1989.)
5. Письмо А.Эйнштейна к Т. Калуце. Цитируется по статье: D. Freedman and P. van Nieuwenhuizen, The Hidden Dimensions of Spacetime, Scientific American, 252(1985), 62.
6. Там же.
7. Физики установили, что в многомерную формулировку труднее всего включить такое понятие стандартной модели как киральность. Поэтому, чтобы не перегружать обсуждение, мы не стали рассматривать это понятие в основном тексте. Для читателей, интересующихся этим вопросом, дадим здесь его краткое описание. Представьте, что кто-то показывает вам фильм, демонстрирующий некоторый научный эксперимент, и предлагает необычное задание — определить, показывает ли фильм сам эксперимент или его отражение в зеркале. Поскольку оператор был очень опытным, никаких признаков наличия зеркала на ленте не видно. Можете ли вы решить эту задачу? В середине 1950-х гг. теоретические работы Т. Д. Ли и Ч. Н.Янга, а также экспериментальные результаты Ц. С. By и ее коллег показали, что вы можете решить эту задачу, если на пленке снят подходящий эксперимент. А именно, их работы доказали, что законы мироздания не обладают полной зеркальной симметрией в том смысле, что зеркальные аналоги некоторых процессов, определяемых слабым взаимодействием, не могут существовать в нашем мире, даже если исходные процессы существуют. Таким образом, если, просматривая фильм, вы увидите, что он демонстрирует один из таких запрещенных процессов, вы будете знать, что наблюдаете зеркальное отражение, а не сам эксперимент. Поскольку зеркальное отражение меняет местами левое и правое, работы Ли, Янга и By показали, что Вселенная не обладает полной симметрией левого и правого, или, используя специальную терминологию, что Вселенная является киральной. Именно это свойство стандартной модели (в частности, слабого взаимодействия) физики считали почти невозможным включить в теорию супергравитации высших размерностей. Чтобы избежать недоразумений, отметим, что в главе 10 мы будем обсуждать концепцию теории струн, известную под названием «зеркальной симметрии», но там слово «зеркальная» будет использоваться в совершенно ином смысле.
8. Для читателя, имеющего математическую подготовку, отметим, что многообразие Калаби—Яу представляет собой комплексное кэлерово многообразие с нулевым первым классом Черна. В 1957 г. Калаби высказал предположение, что каждое такое многообразие допускает Риччи-плоскую метрику, а в 1977 г. Яу доказал справедливость этого предположения.
9. Эта иллюстрация была любезно предоставлена Эндрю Хэнсоном из университета штата Индиана, она была создана с использованием графического пакета Mathematica 3-D.
10. Для читателя, имеющего математическую подготовку, заметим, что это конкретное пространство Калаби—Яу представляет собой действительное трехмерное сечение гиперповерхности пятого порядка в комплексном проективном четырехмерном пространстве.