
- •Предисловие.
- •Введение
- •Руководство по изучению дисциплины
- •Проводники
- •1.2. Теплопроводность металлов
- •1.3. Термоэлектродвижущая сила
- •1.4. Зависимость удельного электрического сопротивления металлов от температуры
- •1.5. Электрические характеристики сплавов
- •1.6. Классификация проводниковых материалов
- •1.7. Материалы высокой проводимости
- •1.8. Сплавы высокого сопротивления
- •1.9. Контактные материалы
- •1.10. Сверхпроводники
- •1.11. Высокотемпературные сверхпроводники (втсп)
- •1.12. Криопроводники
- •Контрольные вопросы по теме: «Проводниковые материалы».
- •Проводниковые материалы
- •Полупроводники
- •2.1. Определение и классификация
- •2.2. Основные параметры полупроводников.
- •2.3. Зависимость подвижности носителей заряда от температуры
- •2.4. Зависимость концентрации носителей заряда от температуры
- •2.6. Время жизни носителей и диффузионная длина
- •2.7. Основные эффекты в полупроводниках и их применение
- •2.8. Полупроводниковые материалы
- •Контрольные вопросы к разделу Полупроводниковые материалы
- •А) Равна подвижности дырок
- •А) Температурой
- •А) Простыми органическими п/п материалами
- •А) Поликристаллический кремний
- •Задачи и упражнения к разделу Полупроводники
- •Введение
- •3.1 Поляризация диэлектриков
- •3.1.1 Определение поляризации
- •3.1.2 Диэлектрическая проницаемость
- •3.1.3 Классификация диэлектриков на линейные и нелинейные
- •3.1.4 Диэлектрики полярные, неполярные и с ионной структурой
- •Метан сн4
- •3.1.5 Электронная поляризация
- •3.1.6 Ионная поляризация
- •3.1.7 Релаксационные виды поляризации
- •3.1.8 Зависимость диэлектрической проницаемости от температуры, давления, влажности, напряжения
- •Влияние давления на ε учитывается барическим коэффициентом ε
- •3.1.9 Диэлектрическая проницаемость смесей
- •3.2 Электропроводность диэлектриков
- •3.2.1 Зависимость тока от времени приложения постоянного напряжения
- •3.2.2 Токи абсорбции
- •3.2.3 Общее выражение для удельной объемной электропроводности
- •С учетом (3.2.4) получим
- •3.2.4 Поверхностное сопротивление твердых диэлектриков
- •3.2.5 Электропроводность газообразных диэлектриков
- •3.2.6 Электропроводность жидких диэлектриков
- •3.2.7 Электропроводность твердых диэлектриков
- •3.2.8 Зависимость удельной электропроводности от напряженности электрического поля
- •3.3 Диэлектрические потери
- •3.3.1 Определения
- •3.3.2 Полные и удельные диэлектрические потери
- •3.3.3 Потери на электропроводность
- •3.3.4. Релаксационные потери
- •3.3.5. Диэлектрические потери полимеров
- •3.3.6. Диэлектрические потери неорганических диэлектриков
- •3.3.7. Диэлектрические потери в неоднородных диэлектриках
- •3.4. Электрическая прочность диэлектриков
- •3.4.1 Пробивное напряжение и электрическая прочность
- •3.4.2 Электротепловой пробой
- •3.4.3. Пробой газообразных диэлектриков
- •3.4.4. Пробой жидких диэлектриков
- •3.4.5. Пробой твердых диэлектриков
- •3.5. Механические, термические и физико-химические свойства диэлектриков
- •3.6. Газообразные диэлектрики
- •3.7. Жидкие диэлектрики
- •3.8. Полимеры. Общие свойства
- •3.9. Синтетические полимеры
- •3.10. Пластмассы и пленочные материалы
- •3.11. Стекло и керамика
- •3.12. Лаки, эмали, компаунды
- •3.13. Слюда и слюдяные материалы
- •3.14. Активные диэлектрики
- •Задачи и упражнения к разделу Диэлектрические материалы
- •Консультация Напомним, что поляризованность есть электрический момент единицы объема
- •Ответ: 0.025 нм
- •4. Магнитные материалы
- •4.1. Магнитные характеристики
- •4.2. Классификация веществ по магнитным свойствам
- •4.3. Природа ферромагнетизма
- •4.4. Доменная структура
- •4.5. Намагничивание магнитных материалов. Кривая намагничивания
- •4.6. Магнитный гистерезис
- •4.7. Структура ферромагнетиков
- •4.8. Магнитострикционная деформация
- •4.9. Магнитная проницаемость
- •4.10. Потери в магнитных материалах
- •4.11. Электрические свойства магнитных материалов
- •4.12. Классификация магнитных материалов
- •4.13. Основные параметры магнитотвердых материалов
- •4.14. Магнитомягкие материалы
- •Тема 8. Магнито диэлектрики (мд)
- •4.14.1. Технически чистое железо
- •4.14.2. Электротехнические стали
- •4.14.3. Пермаллои
- •4.14.4. Альсиферы
- •4.14.5. Магнитомягкие ферриты.
- •4.14.6. Специальные магнитные материалы
- •14.4.7. Аморфные магнитные материалы (амм)
- •4.14.8. Магнито диэлектрики (мд)
- •4.15. Магнитотвердые материалы
- •Тема 1. Сплавы на основе железа. Тема 2. Металлокерамические магниты Тема 3. Магнитотвердые ферриты Тема 4. Сплавы на основе редкоземельных металлов (рзм)
- •4.15.1. Сплавы на основе железа—никеля—алюминия
- •4.15.2. Металлокерамические магниты
- •4.15.3. Магнитотвердые ферриты
- •4.15.4. Сплавы на основе редкоземельных металлов (рзм)
- •Контрольные вопросы к разделу «Магнитные материалы»
- •А) температуру, при которой значение минимально;
- •Задачи и упражнения к разделу “Магнитные материалы“
- •Термины и определения Термины, использованные в эу в соответствии с госТом 22622 – 77
- •Основные государственные стандарты на электротехнические материалы *
- •Предметный указатель
- •А люминий –15
- •Литература.
- •Содержание
3.12. Лаки, эмали, компаунды
Электроизоляционные лаки представляют собой коллоидные растворы лаковой основы, образующие после удаления растворителя пленку, обладающую электроизоляционными свойствами.
Растворители — летучие жидкости, применяемые для растворения лаковых основ и улетучивающиеся в процессе образования пленки. Растворителями могут служить ароматические углеводороды, спирты, сложные и простые эфиры, скипидар и др. В состав лака, кроме того, могут входить следующие дополнительные вещества. Сиккативы — вещества, ускоряющие процесс высыхания растительных масел и лаков. Пластификаторы — вещества, придающие эластичность и ударную прочность лаковой пленке. Отвердители — соединения, способствующие отверждению пленки лака. Инициаторы и ускорители — вещества ускоряющие процесс образования полимеров.
Электроизоляционные эмали представляют собой лаки, в составе которых имеются пигменты — высокодисперсные неорганические вещества, повышающие твердость и механическую прочность лаковой пленки, теплопроводность, дугостойкость. В качестве пигментов часто применяют двуокись титана, железный сурик и др. По способу сушки электроизоляционные лаки делятся на три основные группы: 1) масляные; 2) смоляные; 3) эфироцеллюлозные. По назначению и выполняемым функциям электроизоляционные лаки принято подразделять на три основные группы: пропиточные, покровные и клеящие.
Электроизоляционные компаунды — в основном состоят из тех же веществ, которые входят в состав лаковой основы электроизоляционных лаков, но, в отличие от лаков, не содержат растворителей. В момент применения при нормальной и повышенной температуре компаунды находятся в жидком состоянии и твердеют после охлаждения или в результате происходящих в них химических процессов. Кроме того, в состав компаундов могут входить активные разбавители, понижающие вязкость компаунда, пластификаторы, отвердители, инициаторы и ингибиторы—назначение которых тоже, что и в лаках. В состав компаунда могут также входить наполнители — неорганические и органические порошкообразные или волокнистые материалы, применяемые для уменьшения усадки, улучшения теплопроводности, уменьшения температурного коэффициента расширения и снижения стоимости. В качестве наполнителей применяют пылевидный кварц, тальк, слюдяную пыль, асбестовое и стеклянное волокно и ряд других. По химическому составу электроизоляционные компаунды делятся на компаунды, изготовляемые на основе нефтяных битумов, растительных масел и канифоли, и компаунды на основе синтетических смол. Компаунды на основе синтетических смол изготовляются на основе полиэфирных, эпоксидных, эпоксидно-полиэфирных, кремнийорганических и прочих смол и композиций. По отношению к нагреву электроизоляционные компаунды делятся на термопластичные и термореактивные.
Электроизоляционные лаки и компаунды широко применяются в электроизоляционной и кабельной технике, в производстве электрических машин, турбо- и гидрогенераторов, аппаратов, трансформаторов, распределительных устройств, в высокочастотной технике. После пропитки повышается электрическая прочность материала и всей конструкции в целом, улучшается теплопроводность, теплоотдача обмоток, что позволяет увеличить мощность электрических машин и аппаратов при тех же габаритах, увеличивается механическая прочность, влагостойкость, срок службы всей конструкции.