Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
задания.docx
Скачиваний:
8
Добавлен:
18.03.2015
Размер:
63.91 Кб
Скачать

4 Задание.

1) Стеклом называется твердый аморфный термопластичный материал получаемый переохлаждением расплава различных оксидов.

2) Неорганические стекла– это сложные расплавы высокой вязкости, состоящие из основных и кислотных оксидов

Классификация стекол

  1. По назначению

Технические Строительные Бытовые

оптические, оконные посуда

светотехнические витринные зеркала

электротехнические армированные стеклотара

химико-лабораторные стеклоблоки

приборные

трубные

  1. По стеклообразующему веществу

Силикатные (SiO2) Боросиликатные(B2O3–SiO2) Алюмофосфатные (Al2O3–P2O5)

Алюмосиликатные (Al2O3–SiO2) Алюмоборосиликатные(Al2O3– B2O3–SiO2)

  1. По содержанию модификаторов

Щелочные Бесщелочные Кварцевые

3) Свойства стекол

Плавятся в интервале температур, размягчаются при температуре 600–800 С; переработка требует свыше 1000С.

Свойства стекол изотропны, т. е. не зависят от направления.

При сжатии прочность высокая: до 2000 МПа, а при растяжении – низкая (менее 100 МПа). Твердость стекол составляет 0,5–0,7 твердости алмаза, но они очень хрупкие. Несколько выше механические свойства у кварцевых и бесщелочных стекол.

Важнейшие свойства стекол, определяющие их применение, – оптические: прозрачность, отражение, рассеяние, поглощение, преломление. Обычное листовое стекло 90 % видимого света пропускает, а ультрафиолетовое излучение поглощает. Кварцевые стекла прозрачны для ультрафиолетовых лучей.

Стекла можно закаливать, нагревая выше температуры стеклования и быстро охлаждая в масле или потоке воздуха. Ударная вязкость стекла увеличивается при закалке в 5–7 раз, прочность – в 3–6 раз, повышается термостойкость.

Триплекс– это два листа закаленного стекла, склеенные прозрачной полимерной пленкой. Могут быть плоскими и гнутыми. При разрушении триплекса осколки удерживаются на полимерной пленке и не травмируют окружающих.

Термопан: между двумя стеклами имеется воздушный промежуток, который обеспечивает теплоизоляцию.

4) 5) Ситаллы (кристаллические стекла). Ситаллы представляют собой материалы, полученные путем кристаллизации стекол. Ситаллы изготовляют путем плавления стекольного материала с добавкой катализаторов кристаллизации. Далее расплав охлаждается до пластического состояния и из него формуются изделия. Кристаллизация обычно происходит при повторном нагревании изделий.

По структуре ситаллы занимают промежуточное место между стеклом и керамикой. Их структура состоит из зерен кристаллической фазы, скрепленных стекловидной прослойкой. Содержание кристаллической фазы составляет 30-95%. Пористость отсутствует. Ситаллы характеризуются исключительной мелкозернистостью. По внешнему виду могут быть прозрачными и непрозрачными.

Структура ситаллов определяет их свойства. Ситаллы имеют высокую твердость, высокую прочность при сжатии и низкую при растяжении, обладают жаропрочностью до 900-1200°С, жаростойкостью, износостойкостью. Они характеризуются высокой химической стойкостью и хорошими электроизоляционными свойствами. Ситаллы отличаются хрупкостью, однако меньшей, чем стекло. Применяются ситаллы для деталей, работающих при высоких температурах и в агрессивных средах, деталей радиоэлектроники, инстру­ментов.

Ситаллы, их еще называют стеклокерамикой. Они состоят из стекловидной и кристаллической фазы. Структура ситаллов однородная, мелкозернистая: зерна имеют размер 1–2 мкм.

Получают ситаллы введением в расплав стекла веществ, служащих центами кристаллизации (солей золота, серебра, меди). В результате 95 % объема занимает кристаллическая фаза, остальное – стекловидная прослойка (см. рис. 8).

Свойства ситаллов: их твердость близка к твердости закаленной стали, они термостойки до 700–900 С. Их ударная вязкость в 3–4 раза выше, чем у стекол. Они износостойки, являются диэлектриками и проявляют высокую химическую стойкость. Применение ситаллов включает детали ДВС, подшипники, трубы для химической промышленности, оболочки вакуумных электронных приборов, детали радиоэлектроники, жаростойкие покрытия на металлах, фильеры для вытягивания синтетических волокон, лопасти компрессоров и сопла реактивных двигателей.

5 задание.

1) Чугу́н — сплав железа с углеродом (и другими элементами). Содержание углерода в чугуне не менее 2,14% (точка предельной растворимости углерода в аустените на диаграмме состояний): меньше — сталь. Углерод придаёт сплавам железа твёрдость, снижая пластичность и вязкость. Углерод в чугуне может содержаться в виде цементита и графита. В зависимости от формы графита и количества цементита, выделяют белый, серый, ковкий и высокопрочные чугуны. Чугуны содержат постоянные примеси (Si, Mn, S, P), а в некоторых случаях также легирующие элементы (Cr, Ni, V, Al и др.). Как правило, чугун хрупок. Чугунобладает важными физическими и технологическими свойствами: невысокой температурой плавления (1180-1200° С), повышенными литейными свойствами и высокой износостойкостью. Значительная хрупкость и малая пластичность обычных чугунов является их основным недостатком. Однако другие свойства и экономичность чугуна вполне компенсируют его недостатки В зависимости от того, в каком состоянии и форме находится в чугуне углерод, чугуны разделяются на белые, серые, ковкие и высокопрочные.

2) Сталь  — сплав (твёрдый раствор) железа с углеродом (и другими элементами), характеризующийся эвтектоидным превращением. Содержание углерода в стали не более 2,14 %. Углерод придаёт сплавам железа прочность и твёрдость, снижая пластичность и вязкость. Учитывая, что в сталь могут быть добавлены легирующие элементы, сталью называется содержащий не менее 45 % железа сплав железа с углеродом и легирующими элементами (легированная, высоколегированная сталь). Стали делятся на конструкционные и инструментальные. Разновидностью инструментальной является быстрорежущая сталь.

По химическому составу стали делятся на углеродистые[3] и легированные[4]; в том числе по содержанию углерода — на низкоуглеродистые (до 0,25 % С), среднеуглеродистые (0,3—0,55 % С) и высокоуглеродистые (0,6—2 % С); легированные стали по содержанию легирующих элементов делятся на низколегированные — до 4 % легирующих элементов, среднелегированные — до 11 % легирующих элементов и высоколегированные — свыше 11 % легирующих элементов.

Стали, в зависимости от способа их получения, содержат разное количество неметаллических включений. Содержание примесей лежит в основе классификации сталей по качеству: обыкновенного качества, качественные, высококачественные и особо высококачественные.

По структуре сталь разделяется на аустенитную, ферритную, мартенситную, бейнитную и перлитную. Если в структуре преобладают две и более фаз, то сталь разделяют на двухфазную и многофазную.

3) Деформация - это изменение формы материала или изделия под действием нагрузок. Этот процесс зависит от величины и вида нагрузки, внутреннего строения, формы и характера расположения частиц. Деформация происходит за счет изменений в строении и расположении молекул, их сближения и удаления, что сопровождается изменением сил притяжения и отталкивания. При действии на материал нагрузок им противодействуют внутренние силы, называемые силами упругости. От соотношения внешних сил и сил упругости зависит величина и характер деформации материала. Деформацию различают: -обратимая; -необратимая; 4) Цветные металлы и сплавы Именно с цветных металлов началось применение металлов человеком. Вначале это были самородные металлы: медь, золото, серебро, затем олово и свинец. Характерные особенности цветных металлов:

  • окраска,

  • большая пластичность,

  • низкая твердость,

  • низкая температура плавления,

  • отсутствие полиморфных превращений.

Общепринято подразделение цветных металлов на следующие группы:

Благородные Легкие Легкоплавкие Тугоплавкие

Pt,Ag,Au, [Cu]Be,Mg,Al, [Ti]Zn,Sn,Pb,Sb,Bi,HgW,Mo,Ta,Nb,ZrБлагородными, или драгоценными называют металлы, очень трудно поддающиеся окислению, при обычных условиях не вступающие в химические реакции. «Драгоценные» – относительное понятие: еще вXIXв. платина, месторождения которой имеются на Урале, вовсе не считалась драгоценным металлом, в отличие от золота: из нее делали ковши, обручи и другие хозяйственные изделия. Легкие металлы имеют малый удельный вес и, соответственно, высокую удельную прочность. Легкоплавкие металлы имеют низкие температуры плавления, применяются обычно для литых изделий. Самый легкоплавкий металл – ртуть (tпл= –39 °C, при комнатной температуре является жидкостью).

Тугоплавкие металлы имеют температуры плавления выше, чем у железа. Самый тугоплавкий металл – вольфрам (tпл= 3410 °C). Надо заметить, что не все ученые-металловеды относят тугоплавкие металлы к цветным, некоторые считают их черными или выделяют в отдельную группу.Медь и ее сплавы

Медь – тяжелый металл (γ = 8,9 г/см3) с ГЦК решеткой; полиморфных превращений не имеет. Температура плавления 1083 °C. Ее можно назвать «самым цветным» металлом: поверхность красная, излом розовый.

Чистая медьприменяется чаще всего в электротехнике и электронике. Медь обладает высокой электропроводимостью, поэтому используется как проводник тока (шины, жилы кабелей, обмотки электродвигателей, контакты).

Высочайшая теплопроводность позволяет делать из меди водоохлаждаемые тигли, кристаллизаторы, поддоны, изложницы.

Медь проявляет коррозионную стойкость в атмосфере, морской, речной и водопроводной воде, в других агрессивных средах.

Все медные сплавы подразделяются на две группы: латуни и бронзы.

1. Латуни– сплавы меди с цинком. Если кроме цинка других легирующих элементов нет, то этопростая латунь; если есть и другие добавки –специальная.

2. Бронзы– сплавы меди с любыми элементами, кроме цинка. Классические бронзы – оловянистые (до 10 %Sn). Они дороги. Сложные по составу бронзы дешевле.

Строение сплавов меди с оловом сложное: твердые растворы, интерметаллиды, имеется эвтектоидное превращение.

5) Корро́зия — самопроизвольное разрушение металлов в результате химического или физико-химического взаимодействия с окружающей средой. В общем случае это разрушение любого материала, будь то металл или керамика,дерево или полимер. Причиной коррозии служит термодинамическая неустойчивость конструкционных материалов к воздействию веществ, находящихся в контактирующей с ними среде

Обычно выделяют три направления методов защиты от коррозии:. Конструкционный Активный Пассивный Для предотвращения коррозии в качестве конструкционных материалов применяют нержавеющие стали,кортеновские стали,цветные металлы. При проектировании конструкции стараются максимально изолировать от попадания коррозионной среды, применяя клеи, герметики, резиновые прокладки. Активные методы борьбы с коррозией направлены на изменение структурыдвойного электрического слоя. Применяется наложение постоянного электрического поля с помощью источника постоянного тока, напряжение выбирается с целью повышения электродного потенциала защищаемого металла. Другой метод — использование жертвенного анода, более активного материала, который будет разрушаться, предохраняя защищаемое изделие. В качестве защиты от коррозии может применяться нанесение какого-либо покрытия, которое препятствует образованию коррозионного элемента (пассивный метод).