
- •Министерство образования и науки
- •Содержание
- •Предисловие
- •Программа курса “Механика”
- •Место дисциплины в учебном процессе и виды учебной работы
- •Распределение учебных часов
- •Учебно-тематический план
- •Содержание курса
- •Примерная тематика семинарских занятий
- •Вычислительный эксперимент
- •Средства обеспечения дисциплины
- •Рекомендуемая литература
- •Лекция №1. Введение
- •1. Предмет физики, её связь с другими естественными науками
- •2. Методы физических исследований
- •3. Роль модельных представлений в физике
- •4. Физические величины, их измерение и оценка точности и достоверности полученных результатов
- •5. Системы единиц физических величин
- •Контрольные вопросы
- •Лекция №2. Кинематика материальной точки при прямолинейном движении
- •1. Кинематические законы движения материальной точки
- •Зависимость (2.3)
- •2. Скорость и ускорение при прямолинейном движении
- •Контрольные вопросы
- •Лекция №3. Кинематика материальной точки при криволинейном движении
- •1. Скорость материальной точки при криволинейном движении
- •2. Ускорение материальной точки при криволинейном движении
- •3.Ускорение при движении материальной точки по окружности
- •4. Кинематика вращательного движения материальной точки
- •Контрольные вопросы
- •Лекция №4. Динамика материальной точки
- •1. Первый закон Ньютона
- •2. Масса
- •3. Сила
- •4. Второй закон Ньютона
- •5. Третий закон Ньютона
- •6. Импульс. Общая формулировка второго закона Ньютона
- •7. Виды взаимодействий тел
- •8. Гравитационные силы (силы тяготения)
- •9. Сила тяжести и вес. Невесомость
- •10. Силы трения
- •Контрольные вопросы
- •Лекция №5. Динамика системы материальных точек
- •1. Центр масс системы материальных точек
- •2. Закон сохранения импульса
- •Движение каждой точки описывается вторым законом Ньютона:
- •3. Движение тел с переменной массой. Реактивное движение
- •4. Задача двух тел. Приведенная масса
- •Контрольные вопросы
- •Лекция №6. Законы сохранения
- •1. Работа
- •2. Энергия и работа
- •3. Кинетическая энергия и работа
- •4. Потенциальная энергия
- •5. Закон сохранения и превращения механической энергии
- •6. Соударение двух тел
- •7. Момент силы относительно неподвижного центра
- •8. Момент импульса относительно неподвижного центра
- •9. Закон сохранения момента импульса
- •10. Законы сохранения и симметрия пространства и времени
- •Контрольные вопросы
- •Лекция №7. Механика твердого тела
- •1. Понятие об абсолютно твердом теле
- •2. Твердое тело как система материальных точек
- •3. Поступательное движение твердого тела
- •4. Вращательное движение твердого тела
- •5. Плоское движение твердого тела
- •6. Момент силы относительно оси
- •7. Момент пары сил
- •8. Второй закон Ньютона для вращающегося твердого тела
- •9. Момент инерции твердого тела
- •10. Теорема Штейнера
- •11. Закон сохранения момента импульса при вращательном движении
- •12. Кинетическая энергия вращающегося тела
- •13. Кинетическая энергия тела при плоском движении
- •14. Свободные оси вращения
- •15. Гироскоп
- •16. Степени свободы и связи абсолютно твердого тела
- •17. Условия равновесия твердого тела. Виды равновесия
- •18. Центр тяжести
- •Контрольные вопросы
- •Лекция №8. Механика деформируемых тел
- •1. Упругие силы
- •2. Виды упругих деформаций
- •3. Упругие и пластические деформации. Предел упругости и предел прочности
- •4. Всестороннее растяжение и сжатие
- •5. Энергия упругой деформации
- •Потенциальная энергия упруго деформированного стержня равна
- •6. Кручение
- •Контрольные вопросы
- •Лекция №9. Механика жидкостей и газов
- •1. Механические свойства жидкостей и газов
- •2. Гидростатика
- •Кажущийся вес тела
- •3.Гидродинамика
- •4. Описание движения жидкостей. Уравнение неразрывности струи
- •5. Уравнение Бернулли
- •6. Вязкость
- •7. Ламинарное и турбулентное течения
- •8. Течение вязкой жидкости в круглой трубе. Формула Пуазейля
- •9. Движение тел в жидкостях и газах. Закон Стокса
- •10. Истечение жидкости из отверстия
- •Контрольные вопросы
- •Лекция №10. Движение в неинерциальных системах отсчета
- •1. Неинерциальные системы отсчета
- •2. Силы инерции
- •3. Силы инерции при ускоренном поступательном движении системы отсчета
- •123 4. Силы инерции при равномерном вращательном движении системы отсчета. Центробежная сила инерции
- •5. Сила Кориолиса
- •Контрольные вопросы
- •Лекция №11. Механические колебания и волны
- •1. Гармонические колебания и их характеристики
- •2. Динамика колебательного движения
- •3. Гармонический осциллятор. Пружинный, физический и математический маятники
- •4. Сложение гармонических колебаний одного направления и одинаковой частоты. Биения
- •5. Сложение взаимно перпендикулярных колебаний
- •6. Свободные затухающие колебания
- •7. Вынужденные колебания
- •8. Амплитуда и фаза вынужденных колебаний. Резонанс
- •9. Автоколебания
- •10.Распространение колебаний в однородной упругой среде
- •11. Уравнение плоской и сферической бегущей волны. Фазовая скорость. Волновое уравнение
- •12. Принцип суперпозиции. Групповая скорость
- •13.Энергия упругой волны
- •14. Интерференция волн
- •15. Стоячие волны
- •16. Характеристика звуковых волн
- •17. Эффект Доплера в акустике
- •18. Ультразвук и eго применение
- •Контрольные вопросы
- •Лекция №12. Всемирное тяготение
- •1. Законы Кеплера и закон всемирного тяготения
- •2. Гравитационная масса
- •3. Поле тяготения и его напряженность
- •4. Работа в поле тяготения. Потенциал поля тяготения
- •5. Космические скорости
- •6. Принцип эквивалентности гравитационных сил и сил инерции
- •Контрольные вопросы
- •Лекция № 13. Элементы специальной теории относительности
- •1. Преобразования Галилея. Механический принцип относительности
- •2. Постулаты специальной (частной) теории относительности
- •3. Преобразования Лоренца
- •4. Следствия из преобразований Лоренца
- •5. Интервал между событиями
- •6. Основной закон релятивистской динамики материальной точки
- •7. Взаимосвязь массы и энергии
- •Контрольные вопросы
- •Фатыхов Миннехан Абузарович Механика
5. Сила Кориолиса
Рассмотрим тела, неподвижные относительно вращающейся системы отсчета. При движении тела кроме центробежной возникает еще одна сила инерции, называемая силой Кориолиса или кориолисовой силой.
Возьмем
горизонтально расположенный диск,
вращающийся относительно инерциальной
системы отсчета (которую мы для краткости
будем называть неподвижной) с постоянной
угловой скоростью
(рис.10.6). Допустим, что по окружности
радиусаR
равномерно движется привязанная нитью
к оси диска материальная точка (частица)
со скоростью v' относительно диска.
|
|
Рис.10.6. Справа от дисков показаны направления скоростей, под диском – направления сил: а – совпадают, б – противоположны. |
Линейная
скорость точек окружности равна
.
В случае, изображенном на рис. 10.6 а,
скоростьv
частицы относительно неподвижной
системы имеет модуль, равный
'.
Обозначим через
– нормаль к скорости, направленной
вдоль нити. Поэтому ускорение частицы
в неподвижной системе равно
(10.8)
Здесь
– ускорение частицы относительно диска,
т.е. во вращающейся системе отсчета.
Умножим левую и правую части выражения (10.8) на массу частицы m. В силу предыдущего обозначения ускорения получим
(10.9)
Очевидно, первое выражение в (10.9) есть сила натяжения нити F. Отсюда
(10.10)
Из формулы (10.10) следует, что наблюдатель, «живущий» на диске, должен заключить, что кроме «реальной» силы F на частицу действуют две дополнительные силы, направленные от оси вращения. Первая из них – центробежная сила инерции. Сила, определяемая по последнему выражению (10.10), и есть сила Кориолиса Fk. С учетом направления сил и векторов физических величин, входящих в формулу этой силы, ее можно представить в виде
(10.11)
Мы
получили формулу (10.11) для случая, когда
скорость частицы направлена по касательной
к окружности с центром на оси вращения
системы К'. Можно показать, что эта
формула определяет силу Кориолиса при
любом направлении скорости v'
по
отношению к оси вращения. Из формулы
следует, что в случае, когда частица
движется в неинерциальной системе
параллельно оси вращения (v'
коллинеарна
с
),
сила Кориолиса не возникает.
Из формулы (10.11) вытекает, что:
1) сила
Кориолиса перпендикулярна вектору
,
т.е. всегда лежит в плоскости,
перпендикулярной оси вращения системы
отсчета;
2) сила Кориолиса перпендикулярна скорости v' и, следовательно, работы над частицей не совершает. Эта сила может изменить только направление скорости v', но не ее модуль.
Сила Кориолиса действует на тела, движущиеся относительно вращающейся системы отсчета, например, относительно земли. Поэтому действием этих сил объясняется ряд наблюдаемых на земле явлений. В частности, на рис. 10.7 показано воздействие, которое оказывает сила Кориолиса на движение тел вблизи земной поверхности. При свободном падении сила Кориолиса отклоняет тела к востоку. Это отклонение пропорционально синусу широты местности и, следовательно, максимально на экваторе и равно нулю на полюсах. При падении на экваторе с высоты 30 м (примерно такова высота десятиэтажного дома) отклонение составляет 3,6 мм.
Силу Кориолиса необходимо учитывать при стрельбе на дальние расстояния и вводить соответствующую поправку. При выстреле из орудия, направленного на север, снаряд будет отклоняться к востоку в северном полушарии и к западу – в южном (рис. 10.7б). При выстреле вдоль меридиана на юг направления отклонения будут противоположными. При стрельбе вдоль экватора сила Кориолиса приподнимает снаряд кверху, если выстрел произведен в направлении на восток, и прижимает снаряд к Земле, если выстрел произведен в западном направлении (рис. 10.7а).
Рис. 10.7. Влияние силы Кориолиса на движение тел вблизи земной поверхности |
На рис. 10.7б видно, что сила Кориолиса, действующая на тело, движущееся вдоль меридиана в любом направлении (на север или на юг), направлена по отношению к направлению движения вправо в северном полушарии и влево в южном полушарии. Это приводит к тому, что у рек подмывается всегда правый берег в северном полушарии и левый берег в южном полушарии. Действием силы Кориолиса объясняется также неодинаковый износ рельсов при двухколейном движении – в северном полушарии сильнее изнашивается правый рельс, в южном полушарии – левый. Убедительным доказательством суточного вращения Земли является вызываемый действием силы Кориолиса поворот плоскости колебаний маятника. Соответствующий опыт был впервые осуществлен Фуко в 1851 г. в Париже с маятником длиной 67 м. Маятники, предназначенные для демонстрации вращения Земли, называются маятниками Фуко. Такой маятник длиной 98 м имеется в Ленинграде в Исаакиевском соборе.
На рис. 10.8 показан маятник, находящийся на Северном полюсе. Сила Кориолиса все время направлена вправо по ходу маятника (на южном полюсе она направлена влево). Плоскость качаний маятника поворачивается относительно Земли по часовой стрелке, совершая за сутки один оборот. Относительно гелиоцентрической системы отсчета плоскость качаний неподвижна, а Земля поворачивается против часовой стрелки, делая за сутки один оборот.
|
Рис.10.8.
Качание маятника, находящегося на
Северном полюсе: a
– общий вид; б – траектория груза
маятника (вид сверху). Стрелка показывает
направление поворота плоскости качаний
маятника относительно Земли; вектор
|
Можно
показать, что на широте
плоскость качаний маятника поворачивается
за сутки на угол
.
На экваторе сила Кориолиса направлена
вдоль подвеса маятника и не может вызвать
поворота плоскости качаний.